Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải: ĐK: $x,y\geq 2$
HPT \(\Rightarrow \sqrt{x+1}-\sqrt{y+1}+(\sqrt{y-2}-\sqrt{x-2})=0\)
\(\Leftrightarrow (x-y).\left[\frac{1}{\sqrt{x+1}+\sqrt{y+1}}-\frac{1}{\sqrt{y-2}+\sqrt{x-2}}\right]=0\)
\(\Leftrightarrow x-y=0\) (do dễ thấy biểu thức trong ngoặc vuông luôn âm)
\(\Leftrightarrow x=y\)
Khi đó: $\sqrt{x+1}+\sqrt{x-2}=\sqrt{m}$
$\Leftrightarrow 2x-1+2\sqrt{(x+1)(x-2)}=m$
Để hpt có nghiệm thì pt trên có nghiệm
$\Leftrightarrow m\geq \min (2x-1+2\sqrt{(x+1)(x-2)})$
$\Leftrightarrow m\geq 2.2-1+2.0=3$
Vậy $m\geq 3$
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{y+1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=3\\\left(a^2-1\right)b+\left(b^2-1\right)a+a+b=m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=3\\a^2b+ab^2=m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=3\\ab\left(a+b\right)=m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=3\\ab=\frac{m}{3}\end{matrix}\right.\)
Hệ đã cho có nghiệm khi và chỉ khi pt:
\(\left\{{}\begin{matrix}\frac{m}{3}\ge0\\\left(a+b\right)^2\ge4ab\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\9\ge\frac{4m}{3}\end{matrix}\right.\)
\(\Rightarrow0\le m\le\frac{27}{4}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=1\\a^3+b^3=1-3m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a+b=1\\\left(a+b\right)^3-3ab\left(a+b\right)=1-3m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=1\\ab=m\end{matrix}\right.\)
Để hệ đã cho có nghiệm
\(\Leftrightarrow\left\{{}\begin{matrix}1\ge4m\\1>0\\m\ge0\end{matrix}\right.\) \(\Rightarrow0\le m\le\frac{1}{4}\)
\(\left\{{}\begin{matrix}1+\left|y\right|=\sqrt{x^2-2x+2}\\y^2+\left(m-1\right)\left(x^2-2x\right)=m^2-4m+3\end{matrix}\right.\)
mình viết bị sai đề
Lời giải:
ĐKXĐ:..............
Nếu $y=0$ thì từ PT (1) suy ra $x=1$ (do $x\geq \frac{1}{2}$)
Thay vào PT(2) thấy không thỏa mãn (loại)
Nếu $y< 0$:
\(\frac{y}{\sqrt[3]{x-y}}=\sqrt{x^2-x-y}\geq 0\Rightarrow \sqrt[3]{x-y}< 0\Rightarrow x< y< 0\) (vô lý)
Do đó $y>0$
PT(1) \(\Leftrightarrow \sqrt{x^2-x-y}.\sqrt[3]{x-y}=y\)
\(\Leftrightarrow \sqrt{x^2-x-y}(\sqrt[3]{x-y}-1)+(\sqrt{x^2-x-y}-y)=0\)
\(\Leftrightarrow \sqrt{x^2-x-y}.\frac{x-y-1}{\sqrt[3]{(x-y)^2}+\sqrt[3]{x-y}+1}+\frac{(x+y)(x-y-1)}{\sqrt{x^2-x-y}+y}=0\)
\(\Leftrightarrow (x-y-1)\left[\frac{\sqrt{x^2-x-y}}{\sqrt[3]{(x-y)^2}+\sqrt[3]{x-y}+1}+\frac{x+y}{\sqrt{x^2-x-y}+y}\right]=0\)
Dễ thấy biểu thức trong ngoặc vuông luôn dương với mọi $x\geq \frac{1}{2}; y>0$ nên $x-y-1=0$
$\Rightarrow x=y+1$
Thay vào PT(2):
\(2[(y+1)^2+y^2]-3\sqrt{2y+1}=11\)
\(\Leftrightarrow (2y+1)^2-3\sqrt{2y+1}=10\)
\(\Leftrightarrow t^4-3t=10(t=\sqrt{2y+1})\)
\(\Leftrightarrow (t-2)(t^3+2t^2+4t+5)=0\)
Với mọi $t\geq 0$ thì $t^3+2t^2+4t+5\neq 0$
Do đó $t-2=0\Rightarrow t=2\Rightarrow y=\frac{3}{2}$
$\Rightarrow x=y+1=\frac{5}{2}$
Vậy..........
@Vũ Minh Tuấn @Trần Thanh Phương @Lê Thị Thục Hiền,... mọi nguwoif giúp mk với
@Akai Haruma cô giúp em với ạ
@Nguyễn Việt Lâm thầy giúp em với ạ
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\ge0\\\sqrt{y-3}=b\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a-b=m\\a^2-1+b^2+3=2\left(m+1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=b+m\\a^2+b^2=2m\end{matrix}\right.\)
\(\Rightarrow\left(b+m\right)^2+b^2=2m\)
\(\Leftrightarrow2b^2+2m.b+m^2-2m=0\) (1)
Hệ đã cho có nghiệm khi và chỉ khi (1) có ít nhất 1 nghiệm không âm
Để (1) có nghiệm \(\Leftrightarrow\Delta'=m^2-2\left(m^2-2m\right)\ge0\Rightarrow0\le m\le4\)
Để (1) có 2 nghiệm đều âm \(\Leftrightarrow\left\{{}\begin{matrix}b_1+b_2=-\frac{m}{2}< 0\\b_1b_2=\frac{m^2-2m}{2}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\\left[{}\begin{matrix}m< 0\\m>2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>2\)
Vậy để hệ đã cho có nghiệm \(\Leftrightarrow0\le m\le2\)