K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2021

\(\left\{{}\begin{matrix}-x^2+2x+3\le0\\x+2m-1>0\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}-1\le x\le3\\x>-2m+1\end{matrix}\right.\)

 để pt ....thì \(-2m+1< 3\)

<=>\(-2m< 2\)

<=> \(m>1\)

vậy pt .....

NV
21 tháng 2 2021

Xét \(-x^2+2x+3\le0\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge3\end{matrix}\right.\)

Xét \(x+2m-1>0\Leftrightarrow x>-2m+1\)

Hệ đã cho có nghiệm với mọi m (đều chứa khoảng dương vô cùng)

NV
6 tháng 2 2021

a.

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\le m\end{matrix}\right.\)

Hệ có nghiệm duy nhất \(\Leftrightarrow m=2\)

b.

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+1\right)x\ge6\\2x\le6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{6}{m^2+1}\\x\le3\end{matrix}\right.\)

Hệ có nghiệm duy nhất \(\Leftrightarrow\dfrac{6}{m^2+1}=3\)

\(\Leftrightarrow m=\pm1\)

c.

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-6x+9\ge x^2+7x+1\\5x\ge2m-8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{8}{13}\\x\ge\dfrac{2m-8}{5}\end{matrix}\right.\)

Pt có nghiệm duy nhất khi \(\dfrac{2m-8}{5}=\dfrac{8}{13}\Leftrightarrow m=\dfrac{72}{13}\)

NV
6 tháng 2 2021

d.

Hệ có nghiệm duy nhất khi:

TH1:

 \(\left\{{}\begin{matrix}m>0\\\dfrac{m-3}{m}=\dfrac{m-9}{m+3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m^2-9=m^2-9m\end{matrix}\right.\) \(\Leftrightarrow m=1\)

TH2:

\(\left\{{}\begin{matrix}m+3< 0\\\dfrac{m-3}{m}=\dfrac{m-9}{m+3}\end{matrix}\right.\)

\(\Leftrightarrow m=1\) (ktm)

Vậy \(m=1\)

e.

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2m-1\right)x\ge-2m+3\\\left(4-4m\right)x\le3\end{matrix}\right.\)

Hệ có nghiệm duy nhất khi:

\(\left\{{}\begin{matrix}\left(2m-1\right)\left(4-4m\right)>0\\\dfrac{-2m+3}{2m-1}=\dfrac{3}{4-4m}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{2}< m< 1\\\left[{}\begin{matrix}m=\dfrac{3}{4}\\m=\dfrac{5}{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow m=\dfrac{3}{4}\)

19 tháng 3 2021

a, hệ\(\Leftrightarrow\)$\left \{ {{x>\frac{1}{2} } \atop {x<m+2}} \right.$

để hệ có nghiệm ⇒ m+2< $\frac{1}{2}$ ⇒ m<$\frac{-3}{2}$

9 tháng 6 2021

`x^2-1<=0`

`<=>x^2<=1`

`<=>-1<=x<=1`

`x-m>0<=>x>m`

PT có nghiệm

`=>m>=-1`

5 tháng 4 2017

a)\(\left\{{}\begin{matrix}2m-1>0\Rightarrow m>\dfrac{1}{2}\left(1\right)\\m^2-\left(m-2\right)\left(2m-1\right)< 0\left(2\right)\end{matrix}\right.\)

\(\left(2\right)\Leftrightarrow m^2-\left(2m^2-m-4m+2\right)=-m^2+5m-2< 0\)

\(m^2-5m+2>0\Rightarrow\left[{}\begin{matrix}m< \dfrac{5-\sqrt{17}}{2}< \dfrac{1}{2}\\m>\dfrac{5+\sqrt{17}}{2}\end{matrix}\right.\)

Nghiệm hệ là

\(m>\dfrac{5+\sqrt{17}}{2}\)

b)\(\left\{{}\begin{matrix}m^2-m-2< 0\left(1\right)\\\left(2m-1\right)^2-4\left(m^2-m-2\right)\le0\left(2\right)\end{matrix}\right.\)

 

\(\left(2\right)\left(2m-1\right)^2-4\left(m^2-m-2\right)=9< 0,\forall m\)
Suy ra (2) vô nghiệm .

Kết luận hệ vô nghiệm.

 

 

9 tháng 5 2017

Em chú ý: Đầu dòng viết hoa nhé. Cảm ơn em đã trả lời bài.

9 tháng 6 2021

`3x^2-x-4<=0`

`<=>(x+1)(3x-4)<=0`

`<=>-1<=x<=4/3`

`2x+m<0<=>2x<-m`

PT vô nghiệm

`=>2x<-m<-2`

`<=>m>2`