K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2015

Hàm số có dạng y = ax + b đồng biến nếu a > 0; nghịch biến nếu a < 0

(Đồng biến nghĩa là: Nếu x1 < x2 thì y1 < y2) (Em xem lại trong SGK 9 có nhắc)

Để hàm số đồng biến trên R <=> 3m2 + 5m + 2 > 0

<=> 3m2 + 3m + 2m + 2 > 0

<=> 3m(m +1) + 2.(m+1) > 0 

<=> (3m +2).(m +1) > 0

=> 3m + 2 và m + 1 cùng dấu

TH1: 3m +2 > 0 và m + 1 > 0

=> m > -2/3 và m > -1 => m > -2/3

TH2: 3m + 2 < 0 và m + 1 < 0

=> m < -2/3 và m < -1 => m < -1

Vậy với m > -2/3 hoặc m < -1 thì hàm số đồng biến

15 tháng 6 2015

bạn hơi phân biệt giới tính quá đấy, có con trai cũng thích công chúa sinh đôi mà

huống chi mk thik naruto

a: Để đây là hàm số bậc nhất thì (3m-1)(2m+3)<>0

hay \(m\in\left\{\dfrac{1}{3};-\dfrac{3}{2}\right\}\)

c: Để đây là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m^2-5m+6=0\\m^2+mn+6n^2< >0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;3\right\}\\m^2+mn+6n^2< >0\end{matrix}\right.\)

Trường hợp 1: m=2

\(\Leftrightarrow4+2n+6n^2< >0\)

Đặt \(6n^2+2n+4=0\)

\(\text{Δ}=2^2-4\cdot6\cdot4=4-96=-92< 0\)

Do đó: \(4+2n+6n^2< >0\forall n\)

Trường hợp 2: m=3

\(\Leftrightarrow9+3n+6n^2< >0\)

Đặt \(6n^2+3n+9=0\)

\(\text{Δ}=3^2-4\cdot6\cdot9=9-216=-207< 0\)

Do đó: \(6n^2+3n+9\ne0\forall n\)

Vậy: m=2 hoặc m=3

31 tháng 5 2018

Với điều kiện m ≥ 0 và m ≠ 5 thì m +  5  > 0. Do đó, điều kiện để hàm số đã cho là hàm số bậc nhất đồng biến trên R là:  m  -  5  > 0, suy ra  m  >  5  ⇔ m > 5.

18 tháng 2 2018

Hàm số y   =   ( m 2   –   1 ) x   +   5 m là hàm số đồng biến khi  m 2   –   1   >   0

⇔   ( m   –   1 )   ( m   +   1 )   >   0

TH1: m − 1 > 0 m + 1 > 0 ⇔ m > 1 m > − 1 ⇔ m > 1  

TH2:   m − 1 < 0 m + 1 < 0 ⇔ m < 1 m < − 1 ⇔ m < − 1

Vậy  m > 1 m < − 1

Đáp án cần chọn là: D

5 tháng 10 2019

@MaiLink thanh you bạn nha =)

1 tháng 10 2019

Gia su \(x_1< x_2\)

\(\Rightarrow x_1-x_2< 0\left(1\right)\)

Ta co:

\(f\left(x_1\right)-f\left(x_2\right)=\left(3m^2-7m+5\right)x_1-2011-\left(3m^2-7m+5\right)x_2+2011=\left(x_1-x_2\right)\left(3m^2-7m+5\right)\)Vi la chung minh dong bien nen xet

\(3m^2-7m+5>0\)

Dat \(g\left(m\right)=3m^2-7m+5\)

Ta lai co:

\(\Delta=\left(-7\right)^2-4.3.5=-11< 0\)

Theo dinh li dau tam thuc bac hai thi \(g\left(m\right)\)cung dau voi he so 3

\(\Rightarrow3m^2-7m+5>0\left(2\right)\left(\forall m\right)\)

Tu \(\left(1\right)\)va \(\left(2\right)\)suy ra;

\(\left(x_1-x_2\right)\left(3m^2-7m+5\right)< 0\)

Ma \(f\left(x_1\right)-f\left(x_2\right)=\left(x_1-x_2\right)\left(3m^2-7m+5\right)\)

\(\Rightarrow f\left(x_1\right)< f\left(x_2\right)\)

Vay ham so \(y=f\left(x\right)=\left(3m^2-7m+5\right)x-2011\)dong bien voi moi m

NV
7 tháng 11 2019

a/ Để hàm đã cho là bậc nhất:

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-5m+6=0\\4-m\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=2\\m=3\end{matrix}\right.\\m\ne4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=2\\m=3\end{matrix}\right.\)

Khi đó \(4-m< 0\) nên hàm nghịch biến

b/ Để hàm là bậc nhất

\(\Leftrightarrow m^2-5m+4\ne0\Rightarrow\left\{{}\begin{matrix}m\ne1\\m\ne4\end{matrix}\right.\)

- Nếu \(m^2-5m+4>0\Leftrightarrow\left[{}\begin{matrix}m>4\\m< 1\end{matrix}\right.\) thì hàm đồng biến

- Nếu \(m^2-5m+4< 0\Leftrightarrow1< m< 4\) thì hàm nghịch biến