Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hàm số có cực đại và cực tiểu \(\Leftrightarrow f'\left(x\right)=mx^2-2\left(m-1\right)x+3\left(m-2\right)=0\) có hai nghiệm phân biệt
\(\Leftrightarrow\begin{cases}m\ne0\\\Delta'=\left(m-1\right)^2-3m\left(m-2\right)>0\end{cases}\)
\(\Leftrightarrow1-\frac{\sqrt{6}}{2}\)<\(m\ne0\) <\(1+\frac{\sqrt{6}}{2}\) (*)
Với điều kiện (*) thì \(f'\left(x\right)=0\) có 2 nghiệm phân biệt \(x_{1,}x_2\) và hàm số \(f\left(x\right)\) đạt cực trị tại
........ đạt cực trị tại \(x_1,x_2.\)
Theo định lý Viet ta có : \(x_1+x_2=\frac{2\left(m-1\right)}{m};\) \(x_1\)\(x_2\)\(=\frac{3\left(m-2\right)}{m}\)
Ta có :
\(x_1+2x_2=1\) \(\Leftrightarrow\) \(x_2=1-\frac{2\left(m-1\right)}{m}=\frac{2-m}{m}\); \(x_2=\frac{2\left(m-1\right)}{m}-\frac{2-m}{m}=\frac{3m-4}{m}\)
\(\Leftrightarrow\frac{2-m}{m}.\frac{3m-4}{m}=\frac{3\left(m-2\right)}{m}\)
\(\Leftrightarrow\left(2-m\right)\left(3m-4\right)=3m\left(m-2\right)\)
\(\Leftrightarrow\begin{cases}m=2\\m=\frac{2}{3}\end{cases}\)
Cả 2 giá trị này đều thỏa mãn điều kiện (*).
Vậy \(x_1+2x_2=1\Leftrightarrow m=2,m=\frac{2}{3}\)
Ta có \(y'=3x^2-4\left(m-1\right)x+9\)
y' là tam thức bậc hai nên hàm số đạt cực đại, cực tiểu tại \(x_1,x_2\) khi và ch ỉ khi y' có hai nghiệm phân biệt
\(\Leftrightarrow\Delta=4\left(m-1\right)^2-27>0\) \(\Leftrightarrow\)\(\begin{cases}m>1+\frac{3\sqrt{3}}{2}\\m<1-\frac{3\sqrt{3}}{2}\end{cases}\) (1)
Theo Viet \(x_1+x_2=\frac{4\left(m-1\right)}{3}\); \(x_1x_2=3\)
Khi đó \(\left|x_1-x_2\right|=2\) \(\Leftrightarrow\) \(\left(x_1+x_2\right)^2-4x_1x_2=4\)
\(\Leftrightarrow\frac{16\left(m-1\right)^2}{9}-12=4\)
Ta có \(y'=3x^2-6\left(m+1\right)x+9\)
Hàm số đạt cực đại, cực tiểu tại \(x_1,x_2\) \(\Leftrightarrow\) phương trình \(y'=0\) có hai nghiệm phân biệt là \(x_1,x_2\)
a) Xét phương trình : \(f'\left(x\right)=2x^2+2\left(\cos a-3\sin a\right)x-8\left(1+\cos2a\right)=0\)
Ta có : \(\Delta'=\left(\cos a-3\sin a\right)^2+16\left(1+\cos2a\right)=\left(\cos a-3\sin a\right)^2+32\cos^2\), \(a\ge0\) với mọi a
Nếu \(\Delta'=0\Leftrightarrow\cos a-3\sin a=\cos a=0\Leftrightarrow\sin a=\cos a\Rightarrow\sin^2a+\cos^2a=0\) (Vô lí)
Vậy \(\Delta'>0\)
với mọi a \(\Rightarrow f'\left(x\right)=0\)
có 2 nghiệm phân biệt \(x_1,x_2\) và hàm số có cực đại, cực tiểu
b) Theo Viet ta có \(x_1+x_2=3\sin a-\cos a\)
\(x_1x_2=-4\left(1+\cos2a\right)\)
\(x^2_1+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(3\sin a-\cos a\right)^2+8\left(1+\cos2a\right)=9+8\cos^2a-6\sin a\cos a\)
\(=9+9\left(\sin^2a+\cos^2a\right)-\left(3\sin a+\cos a\right)^2=18-\left(3\sin a+\cos2a\right)\le18\)
Lời giải:
Để hàm số đã cho cho đạt cực trị tại 2 điểm $x_1,x_2$ thì PT $y'=x^2-2mx+m^2+m-1=0$ phải có 2 nghiệm phân biệt.
Điều này xảy ra khi \(\Delta'=m^2-(m^2+m-1)=1-m>0\Leftrightarrow m< 1\)
Áp dụng định lý Vi-et: \(x_1+x_2=2m\)
Để $|x_1+x_2|=4\Leftrightarrw |2m|=4\Leftrightarrow m=\pm 2$
Kết hợp với ĐK $m< 1$ suy ra $m=-2$
Phương trình hoành độ giao điểm của đồ thị với trục hoành là :
\(x^3-2x^2+\left(1-m\right)x+m=0\left(1\right)\)
Biến đổi tương đương phương trình này :
\(\left(1\right)\Leftrightarrow x^3-2x^2+x-mx+m=0\)
\(\Leftrightarrow x\left(x^2-2x+1\right)-m\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-x-m\right)=0\Leftrightarrow x=1\) hoặc \(x^2-x-m=0\left(2\right)\)
Gọi \(x_1,x_2\) là nghiệm của phương trình (2) thì :
\(t^2+x_1^2+x_2^2< 4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2< 3\Leftrightarrow m< 1\) (*)
Yêu cầu bài toán tương đương với (2) có hai nghiệm phân biệt \(x_1;x_2\ne1\) thỏa mãn điều kiện (*)
\(\Leftrightarrow\begin{cases}\Delta=1+4m>0\\1^2-1-m\ne0\\m< 1\end{cases}\)\(\Leftrightarrow\begin{cases}-\frac{1}{4}< m< 1\\m\ne0\end{cases}\)
Tập xác định : D=R
\(y'=12x^2+2mx-3\)
Ta có \(\Delta'=m^2+36>0\) với mọi m, vậy luôn có cực trị
Ta có : \(x_1=-4x_2\)
\(x_1+x_2=-\frac{m}{6}\Rightarrow m=\pm\frac{9}{2}\)
\(x_1x_2=-\frac{1}{4}\)
Đặt \(\left\{{}\begin{matrix}u=x^2-2x+m\\v=x^2+2\end{matrix}\right.\) \(\Rightarrow f'\left(x\right)=\frac{u'v-uv'}{v^2}=0\)
\(\Leftrightarrow u'v=uv'\Leftrightarrow\frac{u}{v}=\frac{u'}{v'}\)
\(\Rightarrow f\left(x_1\right)=\frac{u\left(x_1\right)}{v\left(x_1\right)}=\frac{u'\left(x_1\right)}{v'\left(x_1\right)}=\frac{2x_1-2}{2x_1}=1-\frac{1}{x_1}\)
\(f\left(x_2\right)=\frac{u'\left(x_2\right)}{v'\left(x_2\right)}=\frac{2x_2-2}{2x_2}=1-\frac{1}{x_2}\)
\(\Rightarrow k=\frac{1-\frac{1}{x_1}-1+\frac{1}{x_2}}{x_1-x_2}=\frac{1}{x_1x_2}\)
Mặt khác \(x_1;x_2\) là nghiệm của
\(f'\left(x\right)=0\Leftrightarrow\left(2x-2\right)\left(x^2+2\right)-2x\left(x^2-2x+m\right)=2x^2-2\left(m-2\right)x-4=0\)
\(\Rightarrow x_1x_2=-\frac{4}{2}=-2\)
\(\Rightarrow k=-\frac{1}{2}\)
Hàm số có cực đại và cực tiểu
\(\Leftrightarrow f'\left(x\right)=x^2-2mx+m=0\) có 2 nghiệm phân biệt
\(\Leftrightarrow\Delta'=m^2-m>0\Leftrightarrow m\in D=\left(-\infty,0\right)\cup\left(1,+\infty\right)\) (*)
Với điều kiện này thì \(f'\left(x\right)=0\) có 2 nghiệm phân biệt \(x_1,x_2\) và hàm số \(f\left(x\right)\) đạt cực trị tại \(x_1,x_2\). Theo định lí Viet ta có : \(x_1+x_2=2m;x_1x_2=m\) Suy ra :
\(\left|x_1-x_2\right|\ge8\Leftrightarrow\left|x_1-x_2\right|^2\ge64\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2\ge64\Leftrightarrow4m^2-4m\ge64\)
\(\Leftrightarrow m^2-m-16\ge0\Leftrightarrow m\in\left(-\infty,\frac{1-\sqrt{65}}{2}\right)\cup\left(\frac{1+\sqrt{65}}{2},+\infty\right)\) (thỏa mãn (*))
Vậy để \(\left|x_1-x_2\right|\ge8\) thì \(m\in\left(-\infty,\frac{1-\sqrt{65}}{2}\right)\cup\left(\frac{1+\sqrt{65}}{2},+\infty\right)\)