K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2023

Khi \(x\ne-2\) thì \(f\left(x\right)=\dfrac{3x^2+5x-2}{x+2}\) là một hàm phân thức hoàn toàn xác định nên f(x) liên tục tại các khoảng \(\left(-\infty;-2\right);\left(-2;+\infty\right)\)(1)

\(\lim\limits_{x\rightarrow-2}f\left(x\right)=\lim\limits_{x\rightarrow-2}\dfrac{3x^2+5x-2}{x+2}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{3x^2+6x-x-2}{x+2}\)

\(=\lim\limits_{x\rightarrow-2}\dfrac{\left(x+2\right)\left(3x-1\right)}{x+2}\)

\(=\lim\limits_{x\rightarrow-2}3x-1=3\cdot\left(-2\right)-1=-7\)

\(f\left(-2\right)=m\)

Để hàm số liên tục trên R thì hàm số liên tục tại x=2 và liên tục tại các khoảng \(\left(-\infty;-2\right);\left(-2;+\infty\right)\)(2)

Từ (1),(2) suy ra Để hàm số liên tục trên R thì hàm số liên tục tại x=2

=>\(\lim\limits_{x\rightarrow-2}f\left(x\right)=f\left(-2\right)\)

=>m=-7

19 tháng 11 2023

Khi \(x\ne1\) thì \(f\left(x\right)=\dfrac{3x^2-3x}{x-1}=\dfrac{3x\left(x-1\right)}{x-1}=3x\) hoàn toàn xác định

nên f(x) liên tục trên các khoảng \(\left(-\infty;1\right);\left(1;+\infty\right)\)(1)

\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\dfrac{3x^2-3x}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{3x\left(x-1\right)}{x-1}=\lim\limits_{x\rightarrow1}3x=3\cdot1=3\)

\(f\left(1\right)=m\cdot1+1=m+1\)

Để hàm số liên tục trên R thì hàm số cần liên tục trên các khoảng sau: \(\left(-\infty;1\right);\left(1;+\infty\right)\) và liên tục luôn tại x=1(2)

Từ (1),(2) suy ra để hàm số liên tục trên R thì hàm số cần liên tục tại x=1

=>\(f\left(1\right)=\lim\limits_{x\rightarrow1}f\left(x\right)\)

=>m+1=3

=>m=2

NV
10 tháng 3 2022

Hàm \(f\left(x\right)\) viết lại: \(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{x^2-3x+2}{x-2}\text{ khi }x>2\\\dfrac{x^2-3x+2}{2-x}\text{ khi }x< 2\\a,x=2\end{matrix}\right.\)

\(\lim\limits_{x\rightarrow2^+}f\left(x\right)=\lim\limits_{x\rightarrow2^+}\dfrac{x^2-3x+2}{x-2}=\lim\limits_{x\rightarrow2^+}\dfrac{\left(x-1\right)\left(x-2\right)}{x-2}=\lim\limits_{x\rightarrow2^+}\left(x-1\right)=1\)

\(\lim\limits_{x\rightarrow2^-}f\left(x\right)=\lim\limits_{x\rightarrow2^-}\dfrac{x^2-3x+2}{2-x}=\lim\limits_{x\rightarrow2^-}\dfrac{\left(x-1\right)\left(x-2\right)}{-\left(x-2\right)}=\lim\limits_{x\rightarrow2^-}\left(1-x\right)=-1\)

\(\Rightarrow\lim\limits_{x\rightarrow2^+}f\left(x\right)\ne\lim\limits_{x\rightarrow2^-}f\left(x\right)\)

\(\Rightarrow\) Không tồn tại \(\lim\limits_{x\rightarrow2}f\left(x\right)\Rightarrow\) hàm luôn  luôn gián đoạn tại \(x=2\)

Hay ko tồn tại a thỏa mãn yêu cầu đề bài

9 tháng 4 2017

Ta có:

limx→2+g(x)=limx→2+x2−x−2x−2=limx→2+(x−2)(x+1)x−2=limx→2+(x+1)=3limx→2+⁡g(x)=limx→2+⁡x2−x−2x−2=limx→2+⁡(x−2)(x+1)x−2=limx→2+⁡(x+1)=3

(1)

limx→2−g(x)=limx→2−(5−x)=3limx→2−⁡g(x)=limx→2−⁡(5−x)=3(2)

g(2) = 5 – 2 = 3 (3)

Từ (1), (2) và (3) suy ra: limx→2g(x)=g(2)limx→2⁡g(x)=g(2) .

Do đó hàm số y = g(x) liên tục tại x0 = 2

_ Mặt khác trên (-∞, 2), g(x) là hàm đa thức và trên (2, +∞), g(x) là hàm số phân thức hữu tỉ xác định trên (2, +∞) nên hàm số g(x) liên tục trên hai khoảng (-∞, 2) và (2, +∞)

Vậy hàm số y = g(x) liêu tục trên R.


26 tháng 5 2017

TenAnh1 TenAnh1 A = (-0.04, -7.12) A = (-0.04, -7.12) A = (-0.04, -7.12) B = (15.32, -7.12) B = (15.32, -7.12) B = (15.32, -7.12) C = (-4.78, -5.6) C = (-4.78, -5.6) C = (-4.78, -5.6) D = (7.82, -7.32) D = (7.82, -7.32) D = (7.82, -7.32) E = (-4.82, -6.92) E = (-4.82, -6.92) E = (-4.82, -6.92) F = (10.54, -6.92) F = (10.54, -6.92) F = (10.54, -6.92) G = (-7.14, -8.07) G = (-7.14, -8.07) G = (-7.14, -8.07) H = (12.33, -8.07) H = (12.33, -8.07) H = (12.33, -8.07)

NV
26 tháng 2 2021

\(\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}\dfrac{3\left(x-1\right)}{\left(1-x\right)\left(x^2+x+1\right)\left(\sqrt[3]{\left(3x+5\right)^2}+2\sqrt[3]{3x+5}+4\right)}\)

\(=\lim\limits_{x\rightarrow1^-}\dfrac{-3}{\left(x^2+x+1\right)\left(\sqrt[3]{\left(3x+5\right)^2}+2\sqrt[3]{3x+5}+4\right)}=-\dfrac{1}{12}\)

\(f\left(1\right)=\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^+}\dfrac{2m\sqrt{x}+3}{5}=\dfrac{2m+3}{5}\)

Hàm liên tục trên R khi và chỉ khi:

\(f\left(1\right)=\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^+}\Leftrightarrow\dfrac{2m+3}{5}=-\dfrac{1}{12}\Leftrightarrow m=-\dfrac{41}{24}\)

27 tháng 2 2021

cảm ơn thầy