K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

NV
3 tháng 4 2021

Với \(m=-1\) thỏa mãn

Với \(m\ne-1\) hàm chỉ có cực tiểu mà không có cực đại khi:

\(\left\{{}\begin{matrix}m+1>0\\-m\left(m+1\right)\ge0\end{matrix}\right.\) \(\Leftrightarrow-1< m\le0\)

Vậy \(-1\le m\le0\)

24 tháng 3 2016

\(\Leftrightarrow y'=0\) 

có 2 nghiệm phân biệt \(x_1,x_2\) thỏa mãn \(x_1\)<\(x_2\)<1

\(\Leftrightarrow\)\(\begin{cases}\Delta'=4m^2-m-5>0\\f\left(1\right)=-5m+7>0\\\frac{S}{2}=\frac{2m-1}{3}<1\end{cases}\)\(\Leftrightarrow\)\(\frac{5}{4}\)<m<\(\frac{7}{5}\)

25 tháng 3 2016

Xét \(f'\left(x\right)=4x^3+3mx^2+2mx+m=0\Leftrightarrow m\left(3x^2+2x+1\right)=-4x^3\)

                 \(\Leftrightarrow\frac{-4x^3}{3x^2+2x+1}\) 

Xét hàm số : \(g\left(x\right)=\frac{-4x^3}{3x^2+2x+1}\) có tập xác định : \(D_g=!\)

\(g'\left(x\right)=\frac{-4x^2\left(3x^2+2x+1\right)}{\left(3x^2+2x+1\right)^2}=\frac{-4x^2\left[2\left(x+1\right)^2+x^2+1\right]}{\left(3x^2+2x+1\right)^2}\le0\) với mọi \(x\in!\)

\(\lim\limits g\left(x\right)_{x\rightarrow\infty}=\lim\limits_{x\rightarrow\infty}\frac{-4x}{3+\frac{2}{x}+\frac{1}{x^2}}=\infty\)

Nghiệm của phương trình \(f'\left(x\right)=0\) cũng là giao điểm của đường thẳng y=m với đồ thị y = g(x)

Lập bảng biến thiên ta có đường thẳng y=m cắt y =g(x) tại đúng 1 điểm 

\(\Rightarrow f'\left(x\right)=0\)

 có đúng 1 nghiệm

Vậy hàm số y=f(x) không thể đồng thời có cực đại và cực tiểu

27 tháng 3 2016

Hàm số có cực đại, cực tiểu khi m<2. Tọa độ các điểm cực trị là :

\(A\left(0;m^2-5m+5\right);B\left(\sqrt{2-m};1-m\right);C\left(-\sqrt{2-m};1-m\right)\)

23 tháng 4 2016

Ta có : \(y'=4x^3+12mx^2+6\left(m+1\right)x=2x\left(2x^2+6mx+3\left(m+1\right)\right)\)

\(\Rightarrow y'=0\Leftrightarrow x=0\) hoặc 

               \(\Leftrightarrow f\left(x\right)=2x^2+6mx+3m+3=0\)

a) Hàm số có 3 cực trị khi và chỉ khi \(f\left(x\right)\) có 2 nghiệm phân biệt khác 0

\(\Leftrightarrow\begin{cases}\Delta'=3\left(3m^2-2m-2\right)>0\\f\left(0\right)\ne0\end{cases}\)\(\Leftrightarrow\begin{cases}m< \frac{1-\sqrt{7}}{3}\cup m>\frac{1+\sqrt{7}}{3}\\m\ne-1\end{cases}\)

b) Hàm số chỉ có cực tiểu mà không có cực đại 

\(\Leftrightarrow\) hàm số không có 3 cực trị \(\Leftrightarrow\frac{1-\sqrt{7}}{3}\le m\le\frac{1+\sqrt{7}}{3}\)

21 tháng 10 2020

câu b m= -1 hàm số có 1 cực tiểu duy nhất

23 tháng 4 2016

Hàm số có cực địa và cực tiểu <=> phương trình y'(x) = 0 có hai nghiệm phân biệt :

\(\Leftrightarrow3\left(m+2\right)x^2+6x+m=0\) có 2 nghiệm phân biệt

\(\Leftrightarrow\begin{cases}m+2\ne0\\\Delta'=-3m^2-6m+9>0\end{cases}\)\(\Leftrightarrow\begin{cases}m\ne-2\\m^2+2m-3< 0\end{cases}\) \(\Leftrightarrow-3< m\ne-2< 1\)

23 tháng 4 2016

Hàm số xác định trên R

Ta có \(y'=x^2-2mx+2m-1\Rightarrow y'=0\Leftrightarrow x^2-2mx+2m-1=0\left(2\right)\)

Hàm số có 2 điểm cực trị dương \(\Leftrightarrow\left(2\right)\) có 2 nghiệm dương phân biệt :

\(\Leftrightarrow\begin{cases}\Delta'=m^2-2m+1>0\\S=2m>0\\P=2m-1>0\end{cases}\) \(\Leftrightarrow\begin{cases}m>\frac{1}{2}\\m\ne1\end{cases}\)

Vậy \(\begin{cases}m>\frac{1}{2}\\m\ne1\end{cases}\) là giá trị cần tìm