K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2018

để phương trình \(5x^2-x+m\le0\) vô nghiệm thì \(5x^2-x+m>0\forall x\) \(\Leftrightarrow\left\{{}\begin{matrix}\Delta< 0\\a>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(-1\right)^2-5\left(m\right)>0\\5>0\left(luônđúng\right)\end{matrix}\right.\) \(\Leftrightarrow1-5m>0\Leftrightarrow m< \dfrac{1}{5}\)

vậy \(m< \dfrac{1}{5}\) thì phương trình \(5x^2-x+m\le0\) vô nghiệm

4 tháng 3 2021

a, Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m-1>0\\\Delta'=m^2-4m+4+m-1< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>1\\\left(m-\dfrac{3}{2}\right)^2< -\dfrac{3}{4}\end{matrix}\right.\)

\(\Leftrightarrow\) vô nghiệm

Vậy không tồn tại giá trị m thỏa mãn

b, Yêu cầu bài toán thỏa mãn khi phương trình \(\left(m-1\right)x^2+2\left(m-2\right)x-1< 0\) có nghiệm với mọi x

\(\Leftrightarrow\left\{{}\begin{matrix}m-1< 0\\\Delta'=m^2-3m+3< 0\end{matrix}\right.\)

\(\Leftrightarrow\) vô nghiệm

Vậy không tồn tại giá trị m thỏa mãn

Câu 1: 

Ta có: \(\Delta=\left[-2\left(m+2\right)\right]^2-4\cdot m\cdot\left(2+3m\right)\)

\(\Leftrightarrow\Delta=\left(2m+4\right)^2-4m\left(2+3m\right)\)

\(\Leftrightarrow\Delta=4m^2+16m+16-8m-12m^2\)

\(\Leftrightarrow\Delta=-8m^2+8m+16\)

\(\Leftrightarrow\Delta=-8\left(m^2-m-2\right)\)

Để phương trình vô nghiệm thì \(\Delta< 0\)

\(\Leftrightarrow m^2-m-2>0\)

\(\Leftrightarrow\left(m-2\right)\left(m+1\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m-2>0\\m+1>0\end{matrix}\right.\\\left\{{}\begin{matrix}m-2< 0\\m+1< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}m>2\\m>-1\end{matrix}\right.\\\left\{{}\begin{matrix}m< 2\\m< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>2\\m< -1\end{matrix}\right.\)

4 tháng 3 2021

Câu 1 

Để pt vô nghiệm \(\Rightarrow\Delta'=\left(m+2\right)^2-\left(3m+2\right)m=m^2+4m+4-3m^2-2m=-2m^2+2m+4=-2\left(m^2-m-2\right)=-2\left(m+1\right)\left(m-2\right)< 0\) \(\Leftrightarrow\left(m+1\right)\left(m-2\right)>0\Leftrightarrow\left[{}\begin{matrix}m< -1\\m>2\end{matrix}\right.\)

NV
18 tháng 6 2020

- Với \(m=2\) BPT luôn có nghiệm \(x\ge-\frac{2}{3}\) (ktm)

- Với \(m\ne2\) để BPT vô nghiệm

\(\Leftrightarrow\left\{{}\begin{matrix}m-2< 0\\\Delta'=\left(m+1\right)^2-2m\left(m-2\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\-m^2+6m+1< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m< 2\\\left[{}\begin{matrix}m>3+\sqrt{10}\\m< 3-\sqrt{10}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m< 3-\sqrt{10}\)

20 tháng 2 2019

TH1: 3-m = 0 <=> m=3 khi đó bpt thành

=> 12x + 5 ≥ 0 \(\Leftrightarrow x\ge\dfrac{-5}{12}\) (ko thỏa)

=> loại m=3

TH2: 3-m ≠ 0 <=> m≠3 khi đó bpt nghiệm đúng vs mọi x

=> \(\left\{{}\begin{matrix}3-m\ge0\\\Delta'\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\le3\\\left(m+3\right)^2-\left(3-m\right)\left(m+2\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\le3\\2m^2+5m+3\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\le3\\\dfrac{-3}{2}\le m\le-1\end{matrix}\right.\) \(\Leftrightarrow\dfrac{-3}{2}\le m\le-1\)

vậy \(\dfrac{-3}{2}\le m\le-1\) thỏa ycbt