K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2016

ta có A(x)=2x3-7x2+5x+m

=2x3-3x2-4x2+6x-x+1,5+m-1,5

=x2(2x-3)-2x(2x-3)-\(\frac{1}{2}\)(2x-3)+(m-1,5)

=(2x-3)(x2-2x-\(\frac{1}{2}\))+(m-1,5)

vậy A(x)chia hết cho B(x)

thì m-1,5=0

m=1,5

 

16 tháng 10 2016

Đặt phép chia ta thấy A(x) chia cho B(x) được x^2-2x-1/2 và dư m-3/2

Để A(x) chia hết cho B(x) thì m-3/2=0 <=> m=3/2

(bạn biết cách chia đa thức một biến rồi chứ)
 

1 tháng 11 2018

1. Thực hiện phép chia đa thức: ta có kết quả:

\(x^3+5x^2+3x+a=\left(x+3\right)\left(x^2+2x+b\right)+\left(-3-b\right)x+a-3b\)

Để f(x) chia hết cho x2+2x+b thì -3-b=0 và a-3b=0 <=> b=-3; a=-9

23 tháng 10 2017

a)

\(A=\dfrac{x^2\left(x^2+5x-3\right)-2x\left(x^2+5x-3\right)-4\left(x^2+5x-3\right)+14x-12+ax+y\left(b\right)}{x^2+5x-3}\)\(A=x^2-2x-4+\dfrac{14x-12+ax+y\left(b\right)}{x^2+5x-3}\)

nếu b=y

\(\left\{{}\begin{matrix}a=-14\\b=12\end{matrix}\right.\)

nếu b khác y

a =-14 ; y =12 với mọi b