K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2018

SCP lcjz ???

6 tháng 8 2018

mày lớp mấy đó đm 

3 tháng 6 2015

 

(a+b+c)3= (a+b)3+3(a+b)2c+3(a+b)c2+c2

            =a3+3a2b+3ab2+b2+3(a+b)c(a+b+c)+c2

            =a3+b3+c3+3ab(a+b)+3(a+b)c(a+b+c)

            =a3+b3+c3+3(a+b)[ab+c(a+b+c)]

            =a3+b3+c3+3(a+b)(ab+ac+bc+c2)

           =a3+b3+c3+3(a+b)[(ab+ac)+(bc+c2)]

           =a3+b3+c3+3(a+b)[a(b+c)+c(b+c)]

           =a3+b3+c3+3(a+b)(b+c)(c+a)

Vậy (a+b+c)3 = a3 + b3 + c3 + 3(a+b)(b+c)(c+a)

4 tháng 9 2018

\(a.A=5x-x^2\)

\(=-\left(x^2-5x\right)=-\left[\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\right]=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\)

\(\Rightarrow Max_A=\dfrac{25}{4}\) khi \(x=\dfrac{5}{2}\)

\(b.B=x-x^2=-\left(x^2-x\right)=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\right]=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

\(\Rightarrow Max_B=\dfrac{1}{4}\Leftrightarrow x=\dfrac{1}{2}\)

\(c.C=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4-7\right)=-\left(x-2\right)^2+7\le7\)

\(\Rightarrow Max_C=7\Leftrightarrow x=2\)

4 tháng 9 2018

a) Ta có:

\(A=5x-x^2\)

\(=-\left(x^2-5x\right)\)

\(=-\left(x^2-5x\right)-6,25+6,25\)

\(=-\left(x^2-5x+6,25\right)+6,25\)

\(=-\left(x-2,5\right)^2+6,25\)

Ta lại có:

\(\left(x-2,5\right)^2\ge0\)

\(\Rightarrow-\left(x-2,5\right)^2\le0\)

\(\Rightarrow-\left(x-2,5\right)^2+6,25\le6,25\)

\(\Rightarrow A\le6,25\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-2,5\right)^2=0\)

\(\Leftrightarrow x-2,5=0\)

\(\Leftrightarrow x=2,5\)

Vậy MaxA = 6,25 \(\Leftrightarrow x=2,5\)

25 tháng 7 2017

\(a,A=5x-x^2\)

\(=-\left(x^2-5x+\dfrac{25}{4}\right)+\dfrac{25}{4}\)

\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\forall x\)

Vậy Max A = \(\dfrac{25}{4}\) khi \(x-\dfrac{5}{2}=0\Rightarrow x=\dfrac{5}{2}\)

\(b,B=x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\forall x\)

Vậy Max B = \(\dfrac{1}{4}\) khi \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)

\(c,4x-x^2+3=7-\left(4-4x+x^2\right)\)

\(=7-\left(2-x\right)^2\le7\forall x\)

vậy Max C = 7 khi 2 - x =0 => x = 2

\(d,D=-x^2+8x-11=-\left(x^2-8x+16\right)+5\)

\(=-\left(x-4\right)^2+5\le5\forall x\)

vậy Max D = 5 khi x - 4 = 0 => x = 4

\(e,E=5-8x-x^2=21-\left(16+8x+x^2\right)\)

\(=21-\left(4+x\right)^2\le21\forall x\)

Vậy Max E = 21 khi 4 + x = 0 => x = -4

\(f,F=4x-x^2+1=5-\left(4-4x+x^2\right)\)

\(=5-\left(4-x\right)^2\le5\forall x\)

Vậy Max F = 5 khi 4 - x =0 => x = 4

13 tháng 11 2019

Tham khảo bài của bạn Nguyễn Đức Quốc Khánh nhé

27 tháng 7 2015

abc=a^3+b^3+c^3=(a+b+c)(a+b+c)(a+b+c)

mà số nguyên dương nhỏ nhất ^ ba là 125 nên a+b+c=5(ko thỏa mãn)

__________________nhỏ hai_______216 nên a+b+c=6(ko thỏa mãn)

______________________ba________343 _________7___________

______________________tư________512_________(thỏa mãn)

_____________________năm_______729________9(ko thỏa mãn)

Vậy chỉ có 1 và chỉ 1 số nguyên dương có 3 chữ số abc thỏa mãn đề là: 512

mk ko biết tại sao thử máy tính k đúng, nhưng bạn có thể vận dụng cách của mk, hình như mk sai chỗ phân tích a^3+b^3+c^3

đừng **** nhá,