K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2017

Ta có:

\(k^4-8k^3+23k^2-26k+10=\left(k-1\right)^2\left(k^2-6k+10\right)\)

Dễ thấy: \(\left(k-1\right)^2\) là số chính phương nên để \(k^4-8k^3+23k^2-26k+10\) là SCP thì \(k^2-6k+10\) phải là SCP

Đặt \(k^2-6k+10=n^2\) thì \(\left(n-k+3\right)\left(n+k-3\right)=1\)

Mà k nguyên suy ra \(k=3\)

29 tháng 5 2017

\(k=3\)

14 tháng 12 2015

 

 Đặt             \(x^4+mx^3+29x^2+nx+4=\left(x^2+ax+2\right)^2=x^4+a^2x^2+4+2ax^3+4ax^2+4ax\)

       \(=x^4+2ax^3+\left(a^2+4a\right)x^2+4ax+4\)

=>a2 +4a = 29 => a+2 =+- 5 => a =3 hoặc a =-7

=>n =4a = 

=> m =2a  =

31 tháng 12 2017

Đặt A=n^4+n^3+1 

với n=1=>A=3=>loại

với n\(\ge\)2 ta có: (2n2+n−1)2< 4A ≤(2n2+n) => 4A = ( 2n2+ n ) => n = 2 ( thỏa mãn )

1 tháng 1 2018

- bạn trả lời rõ ra 1 chút đc ko?

14 tháng 8 2017

Để \(k^2+6k+1\)là số chính phương thì \(k^2+6k+1=a^2\left(a\in N\right)\)

\(\left(k^2+6k+9\right)-8=a^2\)

\(\Leftrightarrow\left(k+3\right)^2-a^2=8\)

\(\Leftrightarrow\left(k+a+3\right)\left(k-a+3\right)=8\)

Đến đây liệt kê ước của 8 ra rùi giải tiếp :))