Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử \(x=\left(\sqrt{2}+1\right)^2=3+2\sqrt{2}\) là một nghiệm của pt \(ax^2+bx+c=0\)
\(\Leftrightarrow a\left(3+2\sqrt{2}\right)^2+b\left(3+2\sqrt{2}\right)+c=0\)
\(\Leftrightarrow\left(17a+3b+c\right)+2\left(6a+b\right)\sqrt{2}=0\)
Nếu \(6a+b\ne0\Rightarrow\sqrt{2}=-\frac{17a+3b+c}{2\left(6a+b\right)}\inℚ\) (vô lý)
\(\Rightarrow17a+3b+c=6a+b=0\)
\(\Rightarrow\hept{\begin{cases}b=-6a\\c=a\end{cases}}\)
Thay b và c vào pt đã cho ta được: \(\left(x^2-6x+1\right)\left(x^2-6x+1\right)=0\)
pt này có hai nghiệm là: \(\hept{\begin{cases}x=3+2\sqrt{2}\\x=3-2\sqrt{2}\end{cases}}\)
Nếu \(b>a+c\)tương đương với \(b^2>a^2+2ac+c^2\)
Trừ cả 2 vế cho 4ac ta được : \(b^2-4ac>a^2-2ac+c^2=\left(a-c\right)^2\)
Hay \(\Delta>\left(a-c\right)^2\ge0\)
Vậy ta có điều phải chứng mình
Ta có:
\(\Delta_1+\Delta_2+\Delta_3=a^2-4b+b^2-4c+c^2-4a=a^2+b^2+c^2-48\)
Dễ thấy:\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=48\Rightarrow\Delta_1+\Delta_2+\Delta_3\ge0\)
Khi đó có ít nhất một phương trình có nghiệm