Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
VD Câu b
\(17^5+24^4-13^{21}=17.17^4+24^4-13.\left(13^4\right)^5\)
Ta có
\(17^4\) có chữ số ttạn cùng là 1 => \(17^5=17.17^4\) có chữ số tận cùng là 7
\(24^4\) có chữ số tận cùng là 6
\(13^4\) có chữ số tận cùng là 1 => \(\left(13^4\right)^5\) có chữ số tận cùng là 1 => \(13^{21}=13.\left(13^4\right)^5\) có chữ số tận cùng là 3
=> \(17^5+24^4-13^{21}\) khi cộng, trừ các chữ số tận cùng là 7+6-3=10 => phép tính trên có chữ số tận cùng là 0 nên chia hết cho 10
Chứng minh rằng:
a)8102 -2102 chia hết 10
b)175 + 244 -1321 chia hết 10
a) 172008 = (174)502 = (...1)502 = (....1)
112008 = (....1)
32008 = (34)502 = (...1)502 = (...1)
=> 172008 - 112008 - 32008 = (...1) - (...1) - (...1)
Hiệu 172008 - 112008 tận cùng là 0 => 172008 - 112008 - 32008 tận cùng là 9
b) 1725 = (174)6.17 = (...1)6.17 = (...7)
244 = (242)2 = (...6)2 = (...6)
1321 = (134)5.13 = (...1)5.13 = (...3)
=> B = 1725 - 244 - 1321 = (...7) + (...6) - (....3) = (....0) => B chia hết cho 10
c) Tương tự
a,26.3+17.43=26.3+17.26=26.(3+17)=26.20 chia hết cho 10
b,Ta có A=(3+32+33)+...+(3100+3101+3102)=40+40.33+...+40.3100 =40.(1+33+...+3100) chia hết cho 4
A=(3+32)+...+(3101+3102)=13.(32+...+3100) chia hết cho 13
c,Ta có C có 10 số hạng. mà mỗi số hang của C đếu có tận cùng là 1 nên C có tận cùng là 0 chia hheets cho 5
2.Với n=2k=>n.(n+3) chia hết cho 2
với n=2k+1=>n+3 chia hết cho 2=>
n.(n+3) chia hết cho 2
=>với n thuộc N thì n.(n+3) chia hết cho 2