K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2022

\(\hept{\begin{cases}x^2+y^2=25\\xy=12\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2xy=25\\xy=12\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2.12=25\\xy=12\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2=49\\xy=12\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=\pm7\\xy=12\end{cases}}\)(*)

+) Xét trường hợp \(x+y=7\), khi đó (*) \(\Rightarrow\hept{\begin{cases}x+y=7\\xy=12\end{cases}}\Leftrightarrow\hept{\begin{cases}y=7-x\\x\left(7-x\right)=12\end{cases}}\Leftrightarrow\hept{\begin{cases}y=7-x\\x^2-7x+12=0\left(\cdot\right)\end{cases}}\)

Giải \(\left(\cdot\right)\), ta có \(x^2-7x+12=0\)\(\Leftrightarrow x^2-3x-4x+12=0\)\(\Leftrightarrow x\left(x-3\right)-4\left(x-3\right)=0\)\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)

Khi \(x=3\)thì \(y=7-x=7-3=4\)

Khi \(x=4\)thì \(y=7-x=7-4=3\)

Vậy ta tìm được 2 cặp số (x;y) là \(\left(3;4\right)\)và \(\left(4;3\right)\)

+) Xét trường hợp \(x+y=-7\), khi đó (*) \(\Rightarrow\hept{\begin{cases}x+y=-7\\xy=12\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-7-x\\xy=12\end{cases}}\Leftrightarrow\hept{\begin{cases}y=7-x\\x\left(-7-x\right)=12\end{cases}}\Leftrightarrow\hept{\begin{cases}y=7-x\\x^2+7x+12=0\left(#\right)\end{cases}}\)

Giải \(\left(#\right)\), ta có \(x^2+7x+12=0\)\(\Leftrightarrow x^2+3x+4x+12=0\)\(\Leftrightarrow x\left(x+3\right)+4\left(x+3\right)=0\)\(\Leftrightarrow\left(x+3\right)\left(x+4\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-4\end{cases}}\)

Khi \(x=-3\)thì \(y=-7-x=-7-\left(-3\right)=-4\)

Khi \(x=-4\)thì \(y=-7-x=-7-\left(-4\right)=-3\)

Vậy ta tìm được 2 cặp số (x;y) là \(\left(-3;-4\right)\)và \(\left(-4;-3\right)\)

Như vậy ta tìm được 4 cặp giá trị (x;y) thỏa mãn yêu cầu đề bài là \(\left(3;4\right);\left(4;3\right);\left(-3;-4\right)\)và \(\left(-4;-3\right)\)

24 tháng 2 2022

X = 9
Y = 25

26 tháng 5 2021

47659:9

26 tháng 5 2021

M giải luôn nha

\(\frac{1}{2}=\frac{x^2}{\left(y+1^2\right)}+\)\(\frac{y^2}{\left(x+1\right)^2}\) \(\ge\frac{2xy}{\left(x+1\right)\left(y+1\right)}\)

\(\Leftrightarrow\left(x+1\right)\left(y+1\right)\ge4xy\)

\(\Leftrightarrow3xy\le x+y+1\)

Dấu " = " xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\frac{x^2}{\left(y+1\right)^2}=\frac{y^2}{\left(x+1\right)^2}\\3xy=x+y+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=y\\3x^2-2x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=y=1\left(tm\right)\\x=y=-\frac{1}{3}\left(tm\right)\end{cases}}\)

Vậy ( x ; y ) ......

3 tháng 10 2018

Ta có: 3xy=x+y+1

\(\Leftrightarrow4xy=xy+x+y+1\)

\(\Leftrightarrow4xy=\left(x+1\right)\left(y+1\right)\) 

Lai có:\(\frac{x^2}{\left(y+1\right)^2}+\frac{y^2}{\left(x+1\right)^2}-\frac{1}{2}=0\)

\(\Leftrightarrow\frac{x^2}{\left(y+1\right)^2}+\frac{y^2}{\left(x+1\right)^2}-\frac{2xy}{\left(x+1\right)\left(y+1\right)}=0\)

\(\Leftrightarrow\left(\frac{x}{y+1}-\frac{y}{x+1}\right)^2=0\)

5 tháng 10 2018

giải tiếp hộ t với. sao t tìm ra 4 nghiệm nhưng thử lại chỉ 2 cái đc

9 tháng 10 2016

Đặt \(a=x+y,b=xy\), hệ trở thành \(\hept{\begin{cases}a+b=-1\\ab=-12\end{cases}}\)

Từ pt đầu ta có \(b=-1-a\)thay vào pt sau : \(a\left(-1-a\right)=-12\Leftrightarrow a^2+a-12=0\Leftrightarrow\left(a+4\right)\left(a-3\right)=0\Leftrightarrow\orbr{\begin{cases}a=3\\a=-4\end{cases}}\)

Từ đó suy ra các giá trị của b

Từ a,b tương ứng ta quy về hệ đối xứng loại một và giải.

24 tháng 10 2020

Trả lời nhanh câu hỏi này giùm tớ nào ?                                                                                                                                                                                                                                                                                                                                                                                    

26 tháng 8 2020



bđt1

bạn sửa lại là 9-2t^2 nhé , mình đánh nhầm ^^

26 tháng 8 2020

chuẩn nhé !

bđt 123

20 tháng 2 2019

a) \(\hept{\begin{cases}\left(x-1\right)\left(2x+y\right)=0\\\left(y+1\right)\left(2y-x\right)=0\end{cases}}\)
\(\cdot x=1\Rightarrow\hept{\begin{cases}0=0\\\left(y+1\right)\left(2y-1\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}0=0\\y=-1;y=\frac{1}{2}\end{cases}}\)
\(\cdot y=-1\Rightarrow\hept{\begin{cases}\left(x-1\right)\left(2x-1\right)=0\\0=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1;x=\frac{1}{2}\\0=0\end{cases}}\)
\(\cdot x=2y\Rightarrow\hept{\begin{cases}\left(2y-1\right)5y=0\\0=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=0\Rightarrow x=0\\y=\frac{1}{2}\Rightarrow x=1\end{cases}}\)
\(y=-2x\Rightarrow\hept{\begin{cases}0=0\\\left(1-2x\right)5x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\Rightarrow y=-1\\x=0\Rightarrow y=0\end{cases}}\)

b) \(\hept{\begin{cases}x+y=\frac{21}{8}\\\frac{x}{y}+\frac{y}{x}=\frac{37}{6}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\\left(\frac{21}{8}-y\right)^2+y^2=\frac{37}{6}y\left(\frac{21}{8}-y\right)\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\2y^2-\frac{21}{4}y+\frac{441}{64}=-\frac{37}{6}y^2+\frac{259}{16}y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{21}{8}-y\\1568y^2-4116y+1323=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{8}\\y=\frac{9}{4}\end{cases}}hay\hept{\begin{cases}x=\frac{9}{4}\\y=\frac{3}{8}\end{cases}}\)

c) \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\\\frac{2}{xy}-\frac{1}{z^2}=4\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{1}{z^2}=\left(2-\frac{1}{x}-\frac{1}{y}\right)^2\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x-y\right)^2=-4x^2y^2+2xy\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}8x^2y^2-4x^2y-4xy^2+x^2+y^2-2xy+2xy=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4x^2y^2-4x^2y+x^2+4x^2y^2-4xy^2+y^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\left(2xy-x\right)^2+\left(2xy-y\right)^2=0\\\frac{1}{z^2}=\frac{2}{xy}-4\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=\frac{-1}{2}\end{cases}}\)
d) \(\hept{\begin{cases}xy+x+y=71\\x^2y+xy^2=880\end{cases}}\). Đặt \(\hept{\begin{cases}x+y=S\\xy=P\end{cases}}\), ta có: \(\hept{\begin{cases}S+P=71\\SP=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P\left(71-P\right)=880\end{cases}}\Leftrightarrow\hept{\begin{cases}S=71-P\\P^2-71P+880=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S=16\\P=55\end{cases}}hay\hept{\begin{cases}S=55\\P=16\end{cases}}\)
\(\cdot\hept{\begin{cases}S=16\\P=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=16\\xy=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y\left(16-y\right)=55\end{cases}}\Leftrightarrow\hept{\begin{cases}x=16-y\\y^2-16y+55=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=5\\y=11\end{cases}}hay\hept{\begin{cases}x=11\\y=5\end{cases}}\)

\(\cdot\hept{\begin{cases}S=55\\P=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=55\\xy=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y\left(55-y\right)=16\end{cases}}\Leftrightarrow\hept{\begin{cases}x=55-y\\y^2-55y+16=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{55-3\sqrt{329}}{2}\\y=\frac{55+3\sqrt{329}}{2}\end{cases}}hay\hept{\begin{cases}x=\frac{55+3\sqrt{329}}{2}\\y=\frac{55-3\sqrt{329}}{2}\end{cases}}\)

e) \(\hept{\begin{cases}x\sqrt{y}+y\sqrt{x}=12\\x\sqrt{x}+y\sqrt{y}=28\end{cases}}\). Đặt \(\hept{\begin{cases}S=\sqrt{x}+\sqrt{y}\\P=\sqrt{xy}\end{cases}}\), ta có \(\hept{\begin{cases}SP=12\\P\left(S^2-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\P\left(\frac{144}{P^2}-2P\right)=28\end{cases}}\Leftrightarrow\hept{\begin{cases}S=\frac{12}{P}\\2P^4+28P^2-144P=0\end{cases}}\)
Tự làm tiếp nhá! Đuối lắm luôn

2 tháng 8 2020

bài 2 là tìm giá trị lớn nhất ạ!

ta có A>=0. xét 100=xy+z+xz\(\ge3\sqrt[3]{xy\cdot yz\cdot zx}\)

\(\Rightarrow100\ge3\sqrt[3]{A^2}\Rightarrow\left(\frac{100}{3}\right)^3\ge A^2\Rightarrow A< \frac{100}{3}\sqrt{\frac{100}{3}}\)

dấu đẳng thức xảy ra khi xy=yz=zx

3 tháng 8 2020

Bài 1 nhìn vô đoán ngay a=3,b=2 -> S=13!

AM-GM:\(\frac{5}{9}\left(a^2+9\right)\ge\frac{10}{3}a;\text{ }\frac{4}{9}\left(a^2+\frac{9}{4}b^2\right)\ge\frac{4}{3}ab\)

\(\rightarrow a^2+b^2+5\ge\frac{10}{3}a+\frac{4}{3}ab\ge\frac{10}{3}\cdot3+\frac{4}{3}\cdot6=18\)

\(\Rightarrow S=a^2+b^2\ge13\) (đúng)

Đẳng thức xảy ra khi a=3, b=2.

16 tháng 7 2020

Sai đề nhá, đáng lẽ \(0\le x,y,z\le1\)

Ta dễ có:
\(1+y+zx\le x^2+xy+xz\Rightarrow\frac{x}{1+y+zx}\ge\frac{x}{x^2+xy+xz}=\frac{1}{x+y+z}\)

Tương tự:

\(\frac{y}{1+z+xy}\ge\frac{1}{x+y+z};\frac{z}{1+z+yz}\ge\frac{1}{x+y+z}\)

\(\Rightarrow\frac{x}{1+y+zx}+\frac{y}{1+z+xy}+\frac{z}{1+z+yz}\ge\frac{3}{x+y+z}\)

Đẳng thức xảy ra tại x=y=z=1