Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2}{7}< \frac{1}{n}< \frac{4}{7}\)
\(\Rightarrow\frac{1}{3,5}< \frac{1}{n}< \frac{1}{1,75}\)
\(\Rightarrow3,5>n>1,75\)
\(\Rightarrow\)n \(\in\){ 2 ; 3 }
\(\frac{2}{7}< \frac{1}{n}< \frac{4}{7}\)
\(\Rightarrow n=2\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{-3}=\dfrac{y}{-4}=\dfrac{z+1}{5}=\dfrac{x-y+z+1}{-3+4+5}=\dfrac{8}{6}=\dfrac{4}{3}\)
Do đó: x=-4; y=-16/3; z=17/3
\(A=4x^2y^2+5xyz-1=4\cdot16\cdot\dfrac{256}{9}+5\cdot\left(-4\right)\cdot\dfrac{-16}{3}\cdot\dfrac{17}{3}-1\)
=21815/9
Ta có: x + y = 8
x + z = 10
y + z = 12
\(\Rightarrow x+y+x+z+y+z=8+10+12\)
\(\Rightarrow2x+2y+2z=30\)
\(\Rightarrow2\left(x+y+z\right)=30\)
\(\Rightarrow x+y+z=15\)
+) x + y = 8 \(\Rightarrow z=7\)
+) \(x+z=10\Rightarrow y=5\)
+) \(y+z=12\Rightarrow x=3\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(3;5;7\right)\)
\(\Leftrightarrow3^{-m}=27.81=3^3.3^4=3^7\)
\(\Leftrightarrow-m=7\Rightarrow m=-7\)
Vậy \(m=-7\)
\(\frac{3^{-m}}{81}=27\)
\(\Leftrightarrow\left(3^{-m}\right)=27.81\)
\(\Leftrightarrow3^{-m}=3^7\)
\(\Leftrightarrow-m=-7\)
\(\Rightarrow m=7\)
Vậy m= 7
\(2x^3-1=15\Leftrightarrow2x^3=16\Leftrightarrow x^3=8\Leftrightarrow x=2\)
Thay x vào tỉ lệ thức ta có:
\(\frac{2+16}{9}=\frac{y-25}{16}\Rightarrow y=57\)
\(\frac{2+16}{9}=\frac{z+9}{25}\Rightarrow z=41\)
Vậy: x+y+z=5+57+41=103
x = 40 , y = 0.
=> \(\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)
=>\(\frac{5}{x}=\frac{1}{8}-\frac{2y}{8}\)
=>\(\frac{5}{x}=\frac{1-2y}{8}\)
=>5.8=(1-2y)x
=>40=(1-2y)x
Mà 2y là số chẵn nên 1-2y là số lẻ. => 1-2y\(\in\left\{1;-1;5;-5\right\}\)
=>2y\(\in\left\{0;2;-4;6\right\}\)
=>y\(\in\left\{0;1;-2;3\right\}\)
Lại có x và y là hai số tự nhiên nên y chỉ có thể bằng 0;1 hoặc 3
Thay y = 0 vào ta đc x =40
Thay y=1 vào ta đc x =-40
Thay y=3 vào ta đc x =-8