Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$ƯCLN(a,b)=ab:BCNN(a,b)=1200:120=10$
Do $ƯCLN(a,b)=10$ nên đặt $a=10x, b=10y$ với $x,y$ là số tự nhiên, $x,y$ nguyên tố cùng nhau.
Có:
$ab=10x.10y=1200$
$\Rightarrow xy=12$.
Do $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,12), (3,4), (4,3), (12,1)$
$\Rightarrow (a,b)=(10,120), (30,40), (40,30), (120,10)$
a. Bài làm :
Ta có : \(\hept{\begin{cases}ab=2400\\BCNN\left(a,b\right)=120\end{cases}}\)
\(\Rightarrow\)ƯCLN(a,b)=ab:BCNN(a,b)=2400:120=20
Vì ƯCLN(a,b)=20 nên ta có : \(\hept{\begin{cases}a=20m\\b=20n\\ƯCLN\left(m,n\right)=1\end{cases}}\)
Mà ab=2400
\(\Rightarrow\)20m.20n=2400
\(\Rightarrow\)400m.n=2400
\(\Rightarrow\)mn=6
Vì ƯCLN(m,n)=1 nên ta có bảng sau :
m 1 6 2 3
n 6 1 3 2
a 20 120 40 60
b 120 20 60 40
Vậy (a;b)\(\in\){(20;120);(120;20);(40;60);(60;40)}
b. Bài làm :
Ta có : ƯCLN(a,b)=5
BCNN(a,b)=60
\(\Rightarrow\)ab=ƯCLN(a,b).BCNN(a,b)=5.60=300
Vì ƯCLN(a,b)=5 nên ta có : a=5m ; b=5n ; ƯCLN(m,n)=1 và m, n là các số tự nhiên
Mà ab=300
\(\Rightarrow\)5m.5n=300
\(\Rightarrow\)25m.n=300
\(\Rightarrow\)mn=12
Vì ƯCLN(m,n)=1 nên ta có bảng sau :
m 1 12 3 4
n 12 1 4 3
a 5 60 15 20
b 60 5 20 15
Vậy (a;b)\(\in\){(5;60);(60;5):(20;15):(15;20)}
\(BCNN\left(a,b\right)=3.UCLN\left(a,b\right).Taco:a.b=BCNN\left(a,b\right).UCLN\left(a,b\right)=1200\)
\(\Rightarrow UCLN\left(a,b\right).UCLN\left(a,b\right)=1200:3=400\Rightarrow UCLN\left(a,b\right)=20\)
\(Đặt:a=20a`;b=20b`.\Rightarrow a`b`=1200:400=3=1.3=3.1\Rightarrow a`;b`\in\left\{\left(1;3\right);\left(3;1\right)\right\}\)
\(\Rightarrow a,b\in\left\{\left(20;60\right);\left(60;20\right)\right\}\)
+) a. b = ( a,b) . [a,b] = 6 . 120 = 720
+)Giả sử a<b
a = 6m Trong đó : ( m , n ) = 1 ; m < n
b = 6n
a. b = 6m .6n = 720
36 . m . n = 720
mn = 720 : 36 = 20
_" Tự làm nốt.
Lời giải:
a.
Ta có: $ab=BCNN(a,b).ƯCLN(a,b)$
$\Rightarrow 1200=3.ƯCLN(a,b).ƯCLN(a,b)$
$\Rightarrow ƯCLN(a,b).ƯCLN(a,b)=400=20.20$
$\Rightarrow ƯCLN(a,b)=20$
Đặt $a=20x, b=20y$ với $x,y$ là 2 số nguyên tố cùng nhau.
Khi đđ:
$ab=20x.20y$
$\Rightarrow 1200=400xy\Rightarrow xy=3$
Kết hợp với $x,y$ nguyên tố cùng nhau $\Rightarrow (x,y)=(1,3), (3,1)$
$\Rightarrow (a,b)=(20, 60), (60,20)$
b. Đề không rõ ràng. Bạn viết lại nhé.
Ta có : ab = BCNN(a,b) . ƯCLN(a,b)
=> 120 . ƯCLN(a,b) = 1200
=> UCLN(a,b) = 10
Vì UCLN(a,b) = 10 => a = 10m ; b = 10n (m,n thuộc N; ƯCLN(m,n)=1)
Lại có: ab = 1200
=> 10m.10n = 1200
=> 100mn = 1200
=> mn = 12
Vì ƯCLN(m,n) = 1 nên ta có bảng:
Vậy các cặp (a;b) là (10;120) ; (30;40) ; (40;30) ; (120;10)