K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2016

Bài này dễ nè :

* xét p và q thuộc dạng : 3k ; 3k + 1 ; 3k+2

rồi thay vào nha

10 tháng 8 2016

p = 2; q = 3

Cái này thì mình phải thử, p và q chỉ trong phạm vi 10 thôi.

7p + q và pq + 11 đều là số nguyên tố
pq + 11 là số nguyên tố --> pq phải là số chẵn --> hoặc p = 2 hoặc q = 2

** Nếu p = 2 --> 7p + q = 14 + q
ta thấy 14 chia 3 dư 2 ;
+) nếu q chia hết cho 3,q là số nguyên tố --> q = 3
--> 7p + q = 17 --> là số nguyên tố
--> pq + 11 = 17 --> là số nguyên tố --> thỏa

+) nếu q chia 3 dư 1 --> 14 + q chia hết cho 3 --> là hợp số --> loại

+) nếu q chia 3 dư 2 --> 2q chia 3 dư 1 --> pq + 11 = 2q + 11 chia hết cho 3 --> là hợp số --> loại

** Nếu q = 2 --> 7p + q = 2 + 7p
2 chia 3 dư 2 ;

+) nếu 7p chia hết cho 3 --> p chia hết cho 3 --> p = 3
--> 7p + q = 23
--> pq + 11 = 17 --> đều là ố nguyên tố --> thỏa

+) nếu 7p chia 3 dư 1 --> 2 + 7p chia hết cho 3 --> là hợp số --> loại

+) nếu 7p chia 3 dư 2 --> p chia 3 dư 2 --> 2p chia 3 dư 1
--> pq + 11 = 2p + 11 chia hết cho 3 --> là hợp số --> loại

Tóm lại có 2 giá trị của p ; q thỏa mãn là : p = 2 ; q = 3 hoặc p = 3 ; q = 2

6 tháng 3 2024

7p + q và pq + 11 đều là số nguyên tố
pq + 11 là số nguyên tố --> pq phải là số chẵn --> hoặc p = 2 hoặc q = 2

** Nếu p = 2 --> 7p + q = 14 + q
ta thấy 14 chia 3 dư 2 ;
+) nếu q chia hết cho 3,q là số nguyên tố --> q = 3
--> 7p + q = 17 --> là số nguyên tố
--> pq + 11 = 17 --> là số nguyên tố --> thỏa

+) nếu q chia 3 dư 1 --> 14 + q chia hết cho 3 --> là hợp số --> loại

+) nếu q chia 3 dư 2 --> 2q chia 3 dư 1 --> pq + 11 = 2q + 11 chia hết cho 3 --> là hợp số --> loại

** Nếu q = 2 --> 7p + q = 2 + 7p
2 chia 3 dư 2 ;

+) nếu 7p chia hết cho 3 --> p chia hết cho 3 --> p = 3
--> 7p + q = 23
--> pq + 11 = 17 --> đều là ố nguyên tố --> thỏa

+) nếu 7p chia 3 dư 1 --> 2 + 7p chia hết cho 3 --> là hợp số --> loại

+) nếu 7p chia 3 dư 2 --> p chia 3 dư 2 --> 2p chia 3 dư 1
--> pq + 11 = 2p + 11 chia hết cho 3 --> là hợp số --> loại

Vậy p = 2 ; q = 3 hoặc p = 3 ; q = 2

11 tháng 9 2024

7p + q và pq + 11 đều là số nguyên tố

pq + 11 là số nguyên tố --> pq phải là số chẵn --> hoặc p = 2 hoặc q = 2

 

** Nếu p = 2 --> 7p + q = 14 + q

ta thấy 14 chia 3 dư 2 ;

+) nếu q chia hết cho 3,q là số nguyên tố --> q = 3

--> 7p + q = 17 --> là số nguyên tố

--> pq + 11 = 17 --> là số nguyên tố --> thỏa

 

+) nếu q chia 3 dư 1 --> 14 + q chia hết cho 3 --> là hợp số --> loại

 

+) nếu q chia 3 dư 2 --> 2q chia 3 dư 1 --> pq + 11 = 2q + 11 chia hết cho 3 --> là hợp số --> loại

 

** Nếu q = 2 --> 7p + q = 2 + 7p

2 chia 3 dư 2 ;

 

+) nếu 7p chia hết cho 3 --> p chia hết cho 3 --> p = 3

--> 7p + q = 23

--> pq + 11 = 17 --> đều là ố nguyên tố --> thỏa

 

+) nếu 7p chia 3 dư 1 --> 2 + 7p chia hết cho 3 --> là hợp số --> loại

Ko chắc lắm

+) nếu 7p chia 3 dư 2 --> p chia 3 dư 2 --> 2p chia 3 dư 1

--> pq + 11 = 2p + 11 chia hết cho 3 --> là hợp số --> loại

 

Vậy p = 2 ; q = 3 hoặc p = 3 ; q = 2

7 tháng 7 2015

p=1;q=0

p=0;q=2

p=2;q=3

...

 

25 tháng 2 2016

bạn "tôi học giỏi toán" sai rồi 0 và 1 đâu phải là số nguyên tố

29 tháng 11 2018

xet p,q tung so = 2 hoac > 2 va co dang 2k+1

31 tháng 7 2021

1.ta có: 8p-1 là số nguyên tố (đề bài)

8p luôn luôn là hợp số 

ta có: (8p-1)8p(8p+1) chia hết cho 3 

từ cả 3 điều kiện trên ta có: 8p+1 chia hết cho 3 suy ra 8p+1 là hs