K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2019

22 tháng 8 2015

Ta có a.b.c = a+b+c 
Giả sử a = b = c ta có a^3 = 3a => a^2 = 3. Ptrình này không cho nghiệm nguyên dương, nên a; b; c là 3 số nguyên dương phân biệt. 
Tìm các số nguyên dương: 
Giả sử a là số lớn nhất trong 3 số. Ta có a + b + c = a.b.c < 3a. Hay tích b.c <3. Vì a; b; c là các số nguyên dương; b.c <3. Do b;c nguyên dương nên tích b,c nguyên dương hay b.c = 1 hoặc b.c =2. Mặt khác chứng minh được b khác c nên b và c chỉ có thể là 1 và 2. Ở đây ta giả sử c là 1. thì b là 2. (b khác 2 thì tích b.c > 3 là vô lý). 

Vậy ta có 1 + 2 + a = 1.2.a hay 3+a = 2a => a = 3. 
______________________________________________
li-ke cho mk nhé bn nguyễn thị huyền thương 

 

6 tháng 8 2015

Gọi 2 số lẻ liên tiếp là a^2,(a+2)^2.

Ta có (a+2)^2-a^2=a^2+4a+4-a^2=4a+4=56.

=>4a=52=> a=13. Vậy 2 số lẻ liên tiếp đó là 13,15

20 tháng 12 2015

tổng bằng 14

 

27 tháng 1 2022

Gọi 2 số chính phương liên tiếp là \(a^2\) và \(\left(a+1\right)^2\)

Do a, a + 1 là 2 số tự nhiên liên tiếp 

=> Luôn có 1 số chẵn, 1 số lẻ => \(a\left(a+1\right)\) chẵn

Có \(a^2+\left(a+1\right)^2+a^2.\left(a+1\right)^2\)

\(a^2+\left(a^2+2a+1\right)+a^2\left(a^2+2a+1\right)\)

\(a^4+2a^3+3a^2+2a+1\)

\(\left(a^2+a+1\right)^2=\left[a\left(a+1\right)+1\right]^2\)

=> đpcm

5 tháng 4 2015

gọi 3 số đó lần lượt là n ; n+1 ; n+2 , ta có :

n+ ( n + 1 )2 + ( n + 2 )2 = 77 => 3n2 + 6n + 5 = 77 => 3n( n + 2) =72 => n( n +2 ) = 24

Dễ dàng giải được n = 4 ( vì n là số tự nhiên ). Vậy 3 số cần tìm là 4 ;5 ;6.

Có thể gọi 3 ssos đó là n-1 ; n ; n+1 để phương trình đơn giản hơn

19 tháng 7 2015

tìm ba số nha tự nhiên nha mấy bạn ^^