K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2017

yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

11 tháng 4 2017

Bài 1:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(C=\dfrac{1}{yz}+\dfrac{1}{xz}\ge\dfrac{\left(1+1\right)^2}{xz+yz}=\dfrac{4}{xz+yz}\)

Từ \(x+y+z=3\Rightarrow x+y=3-z\)

\(\Rightarrow C\ge\dfrac{4}{xz+yz}=\dfrac{4}{z\left(x+y\right)}=\dfrac{4}{z\left(3-z\right)}=\dfrac{4}{-z^2+3z}\)

Lại có: \(-z^2+3z=\dfrac{9}{4}-\left(z-\dfrac{3}{2}\right)^2\le\dfrac{9}{4}\)

\(\Rightarrow C\ge\dfrac{4}{-z^2+3z}\ge\dfrac{4}{\dfrac{9}{4}}=\dfrac{16}{9}\)

Đẳng thức xảy ra khi \(x=y=\dfrac{3}{4};z=\dfrac{3}{2}\)

Bài 2:

Từ \(5x^2-5xy+y^2+\dfrac{4}{x^2}=0\)

\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+\left(x^2+\dfrac{4}{x^2}-4\right)+4=xy\)

\(\Leftrightarrow\left(2x-y\right)^2+\left(x-\dfrac{2}{x}\right)^2+4\ge xy\)

Dễ thấy: \(VT\ge4\forall x;y\)\(\Rightarrow VP\ge4\forall x;y\)

Đẳng thức xảy ra khi \(\left(x;y\right)=\left(\sqrt{2};2\sqrt{2}\right);\left(-\sqrt{2};-2\sqrt{2}\right)\)

Bài 3:

Từ \(a^2+b^2=4a+2b+540\)

\(\Leftrightarrow\left(a^2-4a+4\right)+\left(b^2-2b+1\right)=545\)

\(\Leftrightarrow\left(a-2\right)^2+\left(b-1\right)^2=545\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left (P-2063 \right )^2=\left [23(a-2)+4(b-1) \right ]^2\)

\(\leq (23^2+4^2)\left [ (a-2)^2+(b-1)^2 \right ]\)

\(\Rightarrow P\le545+2063=2608\)

Đẳng thức xảy ra khi \(a=25;b=5\)

11 tháng 4 2017

mình cảm ơn nha

14 tháng 8 2019

\(P=\frac{x^2+y^2+3}{x^2+y^2+2}\)

\(P=\frac{x^2+y^2+2+1}{x^2+y^2+2}\)

\(P=1+\frac{1}{x^2+y^2+2}\)

Để P max thì \(\frac{1}{x^2+y^2+2}\) max

\(\frac{1}{x^2+y^2+2}>0\forall x;y\)

Do đó \(\frac{1}{x^2+y^2+2}\) max \(\Leftrightarrow x^2+y^2+2\) min

Mặt khác : \(x^2+y^2+2\ge2\forall x;y\)

Ta có : \(P\ge1+\frac{1}{2}=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=0\)

16 tháng 3 2016

lop may ma kho vay

16 tháng 3 2016

mình tìm được 6 bạn nhé!

27 tháng 7 2017

có phải M=\(\dfrac{x+3}{3x}+\dfrac{2}{x+1}-3:\dfrac{2-4x}{x+1}-3x-x^2+\dfrac{1}{3x}\)

ko bạn

27 tháng 7 2017

cho loi giai di

12 tháng 2 2018

Bài 1:

                    \(x^2-8x+y^2+6y+25=0\)

\(\Leftrightarrow\)\(\left(x^2-8x+16\right)+\left(y^2+6y+9\right)=0\)

\(\Leftrightarrow\)\(\left(x-4\right)^2+\left(y+3\right)^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x-4=0\\y+3=0\end{cases}}\)

\(\Leftrightarrow\)\(\hept{\begin{cases}x=4\\y=-3\end{cases}}\)

Vậy...

Bài 2: 

Phương trình có nghiệm duy nhất là    x = -2/3    nên ta có:

          \(\left(4+a\right).\frac{-2}{3}=a-2\)

\(\Leftrightarrow\)\(-\frac{8}{3}-\frac{2}{3}a=a-2\)

\(\Leftrightarrow\)\(a+\frac{2}{3}a=2-\frac{8}{3}\)

\(\Leftrightarrow\)\(\frac{5}{3}a=-\frac{2}{3}\)

\(\Leftrightarrow\)\(a=-\frac{2}{5}\)

27 tháng 2 2018

Bài 3:

\(A=a^4-2a^3+3a^2-4a+5\)

\(=a^3\left(a-1\right)-a^2\left(a-1\right)+2a\left(a-1\right)-2\left(a-1\right)+3\)

\(=\left(a-1\right)\left(a^3-a^2+2a-2\right)+3\)

\(=\left(a-1\right)\left[a^2\left(a-1\right)+2\left(a-1\right)\right]+3\)

\(=\left(a-1\right)^2\left(a^2+2\right)+3\ge3\)

\(\text{Vậy Min A=3. Dấu "=" xảy ra khi và chỉ khi }a-1=0\Leftrightarrow a=1\)

Bài 4:

\(xy-3x+2y=13\)

\(\Leftrightarrow x\left(y-3\right)+2\left(y-3\right)=7\)

\(\Leftrightarrow\left(x+2\right)\left(y-3\right)=7=1.7=7.1=-1.-7=-7.-1\)

x+2-7-117
y-3-1-771
x-9-3-15
y2-4104

Vậy...

Bài 5:

\(xy-x-3y=2\)

\(\Leftrightarrow x\left(y-1\right)-3\left(y-1\right)=5\)

\(\Leftrightarrow\left(x-3\right)\left(y-1\right)=5=1.5=5.1=-1.-5=-5.-1\)

x-3-5-115
y-1-1-551
x-2248
y0-462

Vậy....

18 tháng 11 2017

a, \(P=\left(\dfrac{2}{x+2}-\dfrac{x}{2-x}-\dfrac{x^2}{x^2-4}\right):\dfrac{4-4x}{x^2+2x}\)

\(=\left(\dfrac{2}{x+2}+\dfrac{-x}{x-2}-\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}\right):\dfrac{4-4x}{x^2+2x}\)

\(=\left(\dfrac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\dfrac{-x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}\right):\dfrac{4-4x}{x^2+2x}\)

\(=\left(\dfrac{2\left(x-2\right)-x\left(x+2\right)-x^2}{\left(x-2\right)\left(x+2\right)}\right):\dfrac{4-4x}{x^2+2x}\)

\(=\left(\dfrac{2x-4+x^2+2x-x^2}{\left(x-2\right)\left(x+2\right)}\right).\dfrac{x^2+2x}{4-4x}\)

\(=\dfrac{4x-4}{\left(x-2\right)\left(x+2\right)}.\dfrac{-x\left(x+2\right)}{4x-4}\)

\(=-\dfrac{x}{x-2}\)

b, Để P có nghĩa

\(\Leftrightarrow x-2\ne0\)

\(\Leftrightarrow x\ne2\)

Thay x= -8 vào biểu thức P ,có :

\(-\dfrac{-8}{-8-2}=-\dfrac{-8}{-10}=\dfrac{8}{10}=-\dfrac{4}{5}\)

Vậy tại x = -8 giá trị của P là

c, Để P có giá trị nguyên

\(\Leftrightarrow-x⋮x-2\)

\(\Leftrightarrow-x+2-2⋮x-2\)

\(\Leftrightarrow-\left(x-2\right)-2⋮x-2\)

\(\Leftrightarrow2⋮x-2\)

\(\Leftrightarrow x-2\inƯ\left(2\right)=\left\{1;2;-1;-2\right\}\)

\(x-2\) 1 2 -1 -2
x 3 4 1 0

Vậy \(x\in\left\{0;1;3;4\right\}\) thì P có giá trị nguyên

18 tháng 11 2017

, cảm ơn nhiều nha. Câu c nghĩ mãi ko ra

NV
14 tháng 11 2019

ĐKXĐ; ...

a/ \(P=\frac{x^2}{x+4}\left[\frac{\left(x+4\right)^2}{x}\right]+9=x\left(x+4\right)+9=\left(x+2\right)^2+5\ge5\)

\(P_{min}=5\) khi \(x=-2\)

b/ \(Q=\left(\frac{\left(x+2\right)\left(x^2-2x+4\right).4\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)\left(x-2\right)\left(x+2\right)}-\frac{4x}{x-2}\right).\frac{x\left(x-2\right)^3}{-16}\)

\(=\left(\frac{4\left(x^2-2x+4\right)-4x\left(x-2\right)}{\left(x-2\right)^2}\right).\frac{-x\left(x-2\right)^3}{16}\)

\(=\frac{16}{\left(x-2\right)^2}.\frac{-x\left(x-2\right)^3}{16}=-x\left(x-2\right)=-x^2+2x\)

\(=1-\left(x-1\right)^2\le1\)

\(Q_{max}=1\) khi \(x=1\)

29 tháng 7 2017

bạn chỉ cần tính như nhân đa thức với đa thức sau đó rút gọn,kết quả ra là số thì bn gọi là ko phù hợp vào biến

29 tháng 7 2017

nếu cần mik giải thì báo nha