K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2023

\(A=\sqrt{1-4x}\)

A có nghĩa khi:

\(1-4x\ge0\)

\(\Leftrightarrow4x\le1\)

\(\Leftrightarrow x\le\dfrac{1}{4}\)

Vậy A có nghĩa khi \(x\le\dfrac{1}{4}\)

ĐKXĐ: 1-4x>=0

=>4x<=1

=>x<=1/4

30 tháng 6 2015

a) Biểu thức có nghĩa khi

\(1-4x^2\ge0\)

\(\Leftrightarrow1\ge4x^2\)

\(\Leftrightarrow4x^2\le1\)

\(\Leftrightarrow\sqrt{4x^2}\le\sqrt{1}\)

\(\Leftrightarrow\)/2x/ nhỏ hơn hoặc bằng 1 ("/" là dấu trị tuyệt đối)

\(\Leftrightarrow-1\le2x\le1\)

b. Biểu thức có nghĩa khi \(x^2-x+1\ge0\)

\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge0\)

Luôn đúng với mọi x thuộc R

c. Biểu thức có nghĩa khi \(4x-x^2-5\ge0\)

\(\Leftrightarrow-x^2+4x-4-1\ge0\)

\(\Leftrightarrow-\left(x-2\right)^2-1\ge0\)

\(\Leftrightarrow-\left(x-2\right)^2\ge1\)(vô lý)

Suy ra không có giá trị nào của x để biểu thức xác định

AH
Akai Haruma
Giáo viên
26 tháng 7 2018

Lời giải:

Điều kiện để $Q$ có nghĩa.

\(x>0; x\neq 1\)

\(Q=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)^2\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)

\(=\frac{1}{4}\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2.\frac{(\sqrt{x}+1)^2-(\sqrt{x}-1)^2}{(\sqrt{x}-1)(\sqrt{x}+1)}\)

\(=\frac{1}{4}\left(\frac{x-1}{\sqrt{x}}\right)^2.\frac{x+1+2\sqrt{x}-(x-2\sqrt{x}+1)}{x-1}\)

\(=\frac{1}{4}.\frac{(x-1)^2}{x}.\frac{4\sqrt{x}}{x-1}\)

\(=\frac{x-1}{\sqrt{x}}\)

b)

\(Q=3\sqrt{x}-3\)

\(\Leftrightarrow \frac{x-1}{\sqrt{x}}=3(\sqrt{x}-1)\)

\(\Leftrightarrow \frac{(\sqrt{x}-1)(\sqrt{x}+1)}{\sqrt{x}}=3(\sqrt{x}-1)\)

\(\Leftrightarrow (\sqrt{x}-1)(\frac{\sqrt{x}+1}{\sqrt{x}}-3)=0\)

\(x\neq 1\Rightarrow \sqrt{x}-1\neq 0\). Do đó:

\(\frac{\sqrt{x}+3}{\sqrt{x}}-3=0\Rightarrow 3=2\sqrt{x}\)

\(\Rightarrow x=\frac{9}{4}\) (thỏa mãn)

1 tháng 2 2019

ây ông ở trên ông ghi là \(\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

sao xuống dưới lại thành \(\dfrac{\sqrt{x}+3}{\sqrt{x}}\)

sửa lại đi ông ơi

3 tháng 8 2019

\(a,\frac{1}{\sqrt{5x+15}}\)

Để biểu thức trên có nghĩa :

\(\Rightarrow\sqrt{5x+15}\ge0\)

\(\Rightarrow5\left(x+3\right)\ge0\)

\(\Rightarrow x\ge-3\)

Vậy....

1 tháng 10 2020

a) đk: \(3x+1\ge0\Rightarrow x\ge-\frac{1}{3}\)

b) đk: \(\hept{\begin{cases}x\ge0\\1-\sqrt{x}\ne0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

c) đk: \(25-x^2\ge0\Leftrightarrow25\ge x^2\Rightarrow\left|x\right|< 5\)

d) đk: \(4x^2-4x+1\ne0\Rightarrow x\ne\frac{1}{2}\)

7 tháng 10 2015

\(=\left(\frac{\sqrt{x}\left(\sqrt{2}+2\right)+\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{2}+2\right)}\right).\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{4\text{x}}}\)

\(=\left(\frac{\sqrt{2\text{x}}+2\sqrt{x}+x-2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{2}+2\right)}\right).\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{4\text{x}}}\)

\(=\frac{\sqrt{2\text{x}}+x}{\left(\sqrt{x}-2\right)\left(\sqrt{2}+2\right)}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{4\text{x}}}\)

\(=\frac{\sqrt{2\text{x}}+x}{\sqrt{2}+2}.\frac{\sqrt{x}-2}{\sqrt{4\text{x}}}\)

\(=\frac{x\sqrt{2}-2\sqrt{2\text{x}}+x\sqrt{x}-2\text{x}}{2\sqrt{2\text{x}}+4\sqrt{x}}\)

tick cho mình nha