Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để D nhỏ nhất thì I x^2 + 5 I phải có kết quả dương nhỏ nhất .
=> x = 0
I y + 4 I đạt giá trị nhỏ nhất khi y = -4
Vậy GTNN của biểu thức trên là 5
E đạt giá trị nhỏ nhất khi x = 1
y - 4 có giá trị nhỏ nhất là 0 nên y = -4
Vậy GTNN của biểu thức trên là 5
Ta có: E=|x-1|+|x-2|+|x-3|+|x-4|=(|x-1|+|3-x|)+(|x-2|+|4-x|) \(\ge\) 2+2 = 4
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x-1\right)\left(3-x\right)\ge0\\\left(x-2\right)\left(4-x\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}1\le x\le3\\2\le x\le4\end{cases}\Leftrightarrow}2\le x\le3}\)
Vậy MinE = 4 khi \(2\le x\le3\)
\(a,\left(2-x\right)\left(\dfrac{4}{5}-x\right)< 0\)
=>Trong 2 số phải có 1 số âm và 1 số dương
Mà \(2-x>\dfrac{4}{5}-x\)
=>\(\dfrac{4}{5}< x< 2\)
Vậy...
\(\text{a)Để C đạt GTNN}\)
\(\Rightarrow\hept{\begin{cases}\left(x+2\right)^2\\\left(y-\frac{1}{5}\right)^2\end{cases}\ge0}\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)
\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge0-10\)
\(\Rightarrow C\ge-10\)
\(\text{Vậy minC=-10 khi x=-2;y= }\frac{1}{5}\)
b)\(\text{Để D đạt GTLN}\)
=>(2x-3)2+5 đạt GTNN
Mà (2x-3)2\(\ge\)5
\(\Rightarrow GTLN\)của \(A=\frac{4}{5}\)khi \(x=\frac{3}{2}\)
Bài 1:
Ta có: \(x+\left(-\frac{31}{12}\right)^2=\left(\frac{49}{12}\right)^2-x\)
\(\Leftrightarrow2x=\frac{1440}{144}=10\)
\(\Rightarrow x=5\)
Khi đó: \(y^2=\left(\frac{49}{12}\right)^2-5=\frac{1681}{144}\)
=> \(\hept{\begin{cases}y=\frac{41}{12}\\y=-\frac{41}{12}\end{cases}}\)
DOAN CUOI LA 1 NHA
MINH VIET NHAM
\(C=x^2+3\cdot|y\cdot2|-1\)
Ta có
\(x^2\ge0\forall x;|y\cdot2|\ge0\forall y\)
\(x^2+3\cdot|y\cdot2|-1\ge-1\)
Dấu = xảy ra
\(\Leftrightarrow\hept{\begin{cases}x^2=0\\2y=0\end{cases}}\)
\(\hept{\begin{cases}x=0\\y=0\end{cases}}\)
Vậy GTNN của C là -1 khi và chỉ khi x = 0 ; y = 0
\(D=x+|x|\)
Ta có
\(|x|\ge0\forall x\)
\(\hept{\begin{cases}x+|x|\ge2x\forall x\ge0\\x+|x|\ge0\forall x\le0\end{cases}}\)
Khi đó GTNN của D là 0 khi và chỉ khi x nhỏ hơn hoặc bằng 0