K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2019

A = 3x2 - 7x + 8 = 3(x2 - 7/3 + 49/36) + 47/12 = 3(x - 7/6)2 + 47/12

Ta luôn có: 3(x - 7/6)2 \(\ge\)\(\forall\)x

=> 3(x - 7/6)2 + 47/12 \(\ge\)47/12 \(\forall\)x

Dấu "=" xảy ra khi: x - 7/6 = 0 <=> x = 7/6

Vậy Min của A = 47/12 tại x = 7/6

28 tháng 8 2020

2. a. \(A=2x^2-8x-10=2\left(x^2-4x+4\right)-18\)

\(=2\left(x-2\right)^2-18\)

Vì \(\left(x-2\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-2\right)^2-18\ge-18\)

Dấu "=" xảy ra \(\Leftrightarrow2\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy minA = - 18 <=> x = 2

b. \(B=9x-3x^2=-3\left(x^2-3x+\frac{9}{4}\right)+\frac{27}{4}\)

\(=-3\left(x-\frac{3}{2}\right)^2+\frac{27}{4}\)

Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow-3\left(x-\frac{3}{2}\right)^2+\frac{27}{4}\le\frac{27}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow-3\left(x-\frac{3}{2}\right)^2=0\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)

Vậy maxB = 27/4 <=> x = 3/2

28 tháng 8 2020

Sửa đề:x3-3x2-4x+12

a,x3-3x2-4x+12

=(x3-3x2)-(4x+12)

=x2(x-3)-4(x-3)

=(x2-4)(x-3)

b,x4- 5x2 +4

x4-4x2-x2+4

(x4-x2)-(4x2+4)

x2(x2-1)-4(x2-1)

(x2-4)(x2-1)

  

18 tháng 10 2018

Đặt \(A=7x^2+5x+3\)

\(A=\left(7x^2+5x+\frac{25}{28}\right)+\frac{59}{28}\)

\(A=7\left(x^2+\frac{5}{7}x+\frac{25}{196}\right)+\frac{59}{28}\)

\(A=7\left(x+\frac{5}{14}\right)^2+\frac{59}{28}\ge\frac{59}{28}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(7\left(x+\frac{5}{14}\right)^2=0\)\(\Leftrightarrow\)\(x=\frac{-5}{14}\)

Vậy GTNN của \(A\) là \(\frac{59}{28}\) khi \(x=\frac{-5}{14}\)

Đặt \(B=-3x^2-3x+5\)

\(B=\left(-3x^2-3x-\frac{3}{4}\right)+\frac{23}{4}\)

\(B=-3\left(x^2+x+\frac{1}{4}\right)+\frac{23}{4}\)

\(B=-3\left(x+\frac{1}{2}\right)^2+\frac{23}{4}\le\frac{23}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(-3\left(x+\frac{1}{2}\right)^2=0\)\(\Leftrightarrow\)\(x=\frac{-1}{2}\)

Vậy GTLN của \(B\) là \(\frac{23}{4}\) khi \(x=\frac{-1}{2}\)

Chúc bạn học tốt ~ 

18 tháng 10 2018

Ta có:

\(7x^2+5x+3=7\left(x^2+\frac{5}{7}x+\frac{3}{7}\right)\)

\(=7\left(x^2+\frac{5}{7}x+\frac{25}{196}+\frac{59}{196}\right)\)

\(=7\left(x+\frac{5}{14}\right)^2+\frac{59}{28}\ge\frac{59}{28}\)

\(-3x^2-3x+5=-3\left(x^2+x-5\right)\)

\(=-3\left(x^2+x+\frac{1}{4}-\frac{21}{4}\right)=-3\left(x+\frac{1}{2}\right)^2+\frac{63}{4}\le\frac{63}{4}\)

22 tháng 11 2016

A=[2(x^2-8x+22)-1]/(x^2-8x+22)

A=2-1/[(x-4)^2+6]

A nho nhat khi (x-4)^2=0=> x=4

min(A)=2-1/6

2 tháng 12 2018

1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)

vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)

dấu = xảy ra khi x-2018=0

=> x=2018

Vậy Min A=\(\frac{2017}{2017}\)khi x=2018

2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)

\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)

để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất

mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)

dấu = xảy ra khi \(x+\frac{3}{2}=0\)

=> x=\(-\frac{3}{2}\)

Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)

3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)

để M lớn nhất => x2+4 nhỏ nhất

mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)

dấu = xảy ra khi x=0

=> x=0

Vậy Max M\(=\frac{7}{2}\)khi x=0

ps: bài này khá dài, sai sót bỏ qua =))

2 tháng 12 2018

ê viết lộn dòng này :v

\(MinA=\frac{2017}{2018}\)nha