Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. a. \(A=2x^2-8x-10=2\left(x^2-4x+4\right)-18\)
\(=2\left(x-2\right)^2-18\)
Vì \(\left(x-2\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-2\right)^2-18\ge-18\)
Dấu "=" xảy ra \(\Leftrightarrow2\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy minA = - 18 <=> x = 2
b. \(B=9x-3x^2=-3\left(x^2-3x+\frac{9}{4}\right)+\frac{27}{4}\)
\(=-3\left(x-\frac{3}{2}\right)^2+\frac{27}{4}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow-3\left(x-\frac{3}{2}\right)^2+\frac{27}{4}\le\frac{27}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow-3\left(x-\frac{3}{2}\right)^2=0\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
Vậy maxB = 27/4 <=> x = 3/2
Đặt \(A=7x^2+5x+3\)
\(A=\left(7x^2+5x+\frac{25}{28}\right)+\frac{59}{28}\)
\(A=7\left(x^2+\frac{5}{7}x+\frac{25}{196}\right)+\frac{59}{28}\)
\(A=7\left(x+\frac{5}{14}\right)^2+\frac{59}{28}\ge\frac{59}{28}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(7\left(x+\frac{5}{14}\right)^2=0\)\(\Leftrightarrow\)\(x=\frac{-5}{14}\)
Vậy GTNN của \(A\) là \(\frac{59}{28}\) khi \(x=\frac{-5}{14}\)
Đặt \(B=-3x^2-3x+5\)
\(B=\left(-3x^2-3x-\frac{3}{4}\right)+\frac{23}{4}\)
\(B=-3\left(x^2+x+\frac{1}{4}\right)+\frac{23}{4}\)
\(B=-3\left(x+\frac{1}{2}\right)^2+\frac{23}{4}\le\frac{23}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(-3\left(x+\frac{1}{2}\right)^2=0\)\(\Leftrightarrow\)\(x=\frac{-1}{2}\)
Vậy GTLN của \(B\) là \(\frac{23}{4}\) khi \(x=\frac{-1}{2}\)
Chúc bạn học tốt ~
Ta có:
\(7x^2+5x+3=7\left(x^2+\frac{5}{7}x+\frac{3}{7}\right)\)
\(=7\left(x^2+\frac{5}{7}x+\frac{25}{196}+\frac{59}{196}\right)\)
\(=7\left(x+\frac{5}{14}\right)^2+\frac{59}{28}\ge\frac{59}{28}\)
\(-3x^2-3x+5=-3\left(x^2+x-5\right)\)
\(=-3\left(x^2+x+\frac{1}{4}-\frac{21}{4}\right)=-3\left(x+\frac{1}{2}\right)^2+\frac{63}{4}\le\frac{63}{4}\)
A=[2(x^2-8x+22)-1]/(x^2-8x+22)
A=2-1/[(x-4)^2+6]
A nho nhat khi (x-4)^2=0=> x=4
min(A)=2-1/6
1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)
vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)
dấu = xảy ra khi x-2018=0
=> x=2018
Vậy Min A=\(\frac{2017}{2017}\)khi x=2018
2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)
\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)
để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất
mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)
dấu = xảy ra khi \(x+\frac{3}{2}=0\)
=> x=\(-\frac{3}{2}\)
Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)
3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)
để M lớn nhất => x2+4 nhỏ nhất
mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)
dấu = xảy ra khi x2 =0
=> x=0
Vậy Max M\(=\frac{7}{2}\)khi x=0
ps: bài này khá dài, sai sót bỏ qua =))
A = 3x2 - 7x + 8 = 3(x2 - 7/3 + 49/36) + 47/12 = 3(x - 7/6)2 + 47/12
Ta luôn có: 3(x - 7/6)2 \(\ge\)0 \(\forall\)x
=> 3(x - 7/6)2 + 47/12 \(\ge\)47/12 \(\forall\)x
Dấu "=" xảy ra khi: x - 7/6 = 0 <=> x = 7/6
Vậy Min của A = 47/12 tại x = 7/6