K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2019

Ta có: A = 2x2 - 5x - 8 = 2(x2 - 5/2x + 25/16) - 89/8 = 2(x - 5/4)2 - 89/8

Ta luôn có: 2(x - 5/4)2 \(\ge\)\(\forall\)x

=> 2(x - 5/4)2 - 89/8 \(\ge\)-89/8 \(\forall\)x

Dấu "=" xảy ra <=> x - 5/4 = 0 <=> x = 5/4

Vậy Min của A = -89/8 tại x = 5/4

Ta có: B = -x2 - 4x + 3 = -(x2 + 4x + 4) + 7 = -(x + 2)2 + 7

Ta luôn có: -(x + 2)2 \(\le\)\(\forall\)x

=> -(x + 2)2 + 7 \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2

Vậy Max của B = 7 tại x = -2

14 tháng 2 2016

1/2 ở bài 1 là phân số à

1 tháng 8 2016

Hỏi đáp Toán

1 tháng 8 2016

\(A=\left(x-3,5\right)^2+1\)

Vì \(\left(x-3,5\right)^2\ge0\)

=> \(\left(x-3,5\right)^2+1\ge1\)

Vậy GTNN của A là 1 khi x=3,5

\(B=\left(2x-3\right)^4-2\)

Vì \(\left(2x-3\right)^4\ge0\)

=> \(\left(2x-3\right)^4-2\ge-2\)

Vậy GTNN của B là -2 khi x=\(\frac{3}{2}\)

\(C=2-x^2=-x^2+2\)

Vì \(x^2\ge0\)

=> \(-x^2\le0\)

=>\(-x^2+2\le2\)

Vậy GTLN của C là 2 khi x=0

\(D=-\left(x-3\right)^2+1\)

Vì \(\left(x-3\right)^2\ge0\)

=> \(-\left(x-3\right)^2\le0\)

=>\(-\left(x-3\right)+1\le1\)

Vậy GTLN của D là 1 khi x=3

29 tháng 4 2020

a)bậc 2

b) bậc 2

c)bậc 3

d) bậc 2

a, \(2x-5xy+3x^2\)Bậc : 2

b, \(ax^3+2xy-5\)Bậc : 3

c, \(5x^3-4x+7x^2-8x^3+4x+1-5x^2=-3x^3+2x^2+1\)Bậc : 3

d, \(-3x^5-x^3y-xy^2+3x^5+2=-x^3y-xy^2+2\)Bậc : 4 

10 tháng 6 2016

a/ Xét 2 trường hợp: 

   +) x \(\ge\)2/3 , ta có: 3x - 2 + 5x = 4x - 10 => 3x + 5x - 4x = 2 - 10 => 4x = -8 => x = -2 (loại)

   +) x < 2/3 , ta có: 2 - 3x + 5x = 4x - 10 => - 3x + 5x - 4x = -10 - 2 => -2x = -12 => x = 6 (loại)

                     Vậy biểu thức vô nghiệm

b/ Ta có: 3 + |2x + 5| > 3 => |2x + 5| > 0 => 2x + 5 > 0 => x > -5/2

                      Vậy x > -5/2

25 tháng 3 2017

b. là >13 nhé bạn

21 tháng 9 2016

Nhận xét : Lũy thừa bậc chẵn hay giá trị tuyệt đối của 1 số hữu tỉ luôn lớn hơn hoặc bằng 0(bằng 0 khi số hữu tỉ đó là 0)

1)\(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow\left(2x+\frac{1}{3}\right)^4-10\ge-10\).Vậy GTNN của A là -10 khi :

\(\left(2x+\frac{1}{3}\right)^4=0\Rightarrow2x+\frac{1}{3}=0\Rightarrow2x=\frac{-1}{3}\Rightarrow x=\frac{-1}{6}\)

\(|2x-\frac{2}{3}|\ge0;\left(y+\frac{1}{4}\right)^4\ge0\Rightarrow|2x-\frac{2}{3}|+\left(y+\frac{1}{4}\right)^4-1\ge-1\).Vậy GTNN của B là -1 khi :

\(\hept{\begin{cases}|2x-\frac{2}{3}|=0\Rightarrow2x-\frac{2}{3}=0\Rightarrow2x=\frac{2}{3}\Rightarrow x=\frac{1}{3}\\\left(y+\frac{1}{4}\right)^4=0\Rightarrow y+\frac{1}{4}=0\Rightarrow y=\frac{-1}{4}\end{cases}}\)

2)\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6\ge0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)^6\le0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)+3\le3\).Vậy GTLN của C là 3 khi :

\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6=0\Rightarrow\frac{3}{7}x-\frac{4}{15}=0\Rightarrow\frac{3}{7}x=\frac{4}{15}\Rightarrow x=\frac{4}{15}:\frac{3}{7}=\frac{28}{45}\)

\(|x-3|\ge0;|2y+1|\ge0\Rightarrow-|x-3|\le0;-|2y+1|\le0\Rightarrow-|x-3|-|2y+1|+15\le15\)

Vậy GTLN của D là 15 khi :\(\hept{\begin{cases}|x-3|=0\Rightarrow x-3=0\Rightarrow x=3\\|2y+1|=0\Rightarrow2y+1=0\Rightarrow2y=-1\Rightarrow y=\frac{-1}{2}\end{cases}}\)