K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2020

\(C=-2x^2+8x-15\)

\(\Leftrightarrow C=-2\left(x^2-4x+4\right)-7\)

\(\Leftrightarrow C=-7-2\left(x-2\right)^2\le-7\)

     Dấu = xảy ra khi x=2

vậy Max C =7 khi x=2

ko có min nhé

27 tháng 8 2020

B = 4x2 + 8x 

= 4( x2 + 2x + 1 ) - 4

= 4( x + 1 )2 - 4

4( x + 1 )2 ≥ 0 ∀ x => 4( x + 1 )2 - 4 ≥ -4

Đẳng thức xảy ra <=> x + 1 = 0 => x = -1

=> MinB = -4 <=> x = -1

C = -2x2 + 8x - 15

= -2( x2 - 4x + 4 ) - 7

= -2( x - 2 )2 - 7

-2( x - 2 )2 ≤ 0 ∀ x => -2( x - 2 )2 - 7 ≤ -7

Đẳng thức xảy ra <=> x - 2 = 0 => x = 2

=> MaxC = -7 <=> x = 2

20 tháng 7 2017

A=x2-4x+7

= x2-4x+4+3

= (x-2)2+3

Vì (x+2)2>0

Nên (x-2)2+3>/3

Vậy MAX của A=3 khi x-2=0 => x=2

1 tháng 7 2019

Tìm GTLN:

\(A=-x^2+6x-15\)

\(=-\left(x^2-6x+15\right)\)

\(=-\left(x^2-2.x.3+9+6\right)\)

\(=-\left(x+3\right)^2-6\le0\forall x\)

Dấu = xảy ra khi: 

   \(x-3=0\Leftrightarrow x=3\)

Vậy Amax = - 6 tại x = 3

Tìm GTNN :

\(A=x^2-4x+7\)

\(=x^2+2.x.2+4+3\)

\(=\left(x+2\right)^2+3\ge0\forall x\)

Dấu = xảy ra khi:

   \(x+2=0\Leftrightarrow x=-2\)

Vậy Amin = 3 tại x = - 2

Các câu còn lại làm tương tự nhé... :)

2 tháng 7 2019

giải hết i

26 tháng 7 2018

bài 1

a, \(A=\frac{1}{-x^2+2x-2}=\frac{1}{-\left(x^2-2x+1\right)-1}=\frac{1}{-\left(x-1\right)^2-1}\)

Vì \(-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2-1\le-1\Rightarrow A=\frac{1}{-\left(x-1\right)^2-1}\ge\frac{1}{-1}=-1\)

Dấu "=" xảy ra khi x=1

Vậy Amin=-1 khi x=1

b, \(B=\frac{2}{-4x^2+8x-5}=\frac{2}{-4\left(x^2-2x+1\right)-1}=\frac{2}{-4\left(x-1\right)^2-1}\ge\frac{2}{-1}=-2\)

Dấu "=" xảy ra khi x=1

Vậy Bmin=-2 khi x=1

bài 2:

a, \(A=\frac{3}{2x^2+2x+3}=\frac{3}{2\left(x^2+x+\frac{1}{4}\right)+\frac{5}{2}}=\frac{3}{2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}}\)

Vì \(2\left(x+\frac{1}{2}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}\ge\frac{5}{2}\Rightarrow A=\frac{3}{2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}}\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)

dấu "=" xảy ra khi x=-1/2

Vậy Amax=6/5 khi x=-1/2

b, \(B=\frac{5}{3x^2+4x+15}=\frac{5}{3\left(x^2+\frac{4}{3}x+\frac{4}{9}\right)+\frac{41}{3}}=\frac{5}{3\left(x+\frac{2}{3}\right)^2+\frac{41}{3}}\le\frac{5}{\frac{41}{3}}=\frac{15}{41}\)

Dấu '=" xảy ra khi x=-2/3

Vậy Bmax=15/41 khi x=-2/3

22 tháng 10 2019

toi ko bt

16 tháng 12 2021

có ai làm NY tui hem

23 tháng 7 2016

làm a)  GTLN = -2( x2 -4x +2) + 4 

GTLN =4

7 tháng 8 2016

\(B=2x^2+8x+1\)

\(=2\times\left(x^2+2\times x\times2+2^2-2^2+\frac{1}{2}\right)\)

\(=2\times\left[\left(x+2\right)^2-\frac{7}{2}\right]\)

\(\left(x+2\right)^2\ge0\)

\(\left(x+2\right)^2-\frac{7}{2}\ge-\frac{7}{2}\)

\(2\times\left[\left(x+2\right)^2-\frac{7}{2}\right]\ge-7\)

Vậy Min B = -7 khi x = -2

23 tháng 7 2016

b.\(\left(x^2+x+1\right)^2\ge0\) vs mọi x

=>\(\left(x^2+x+1\right)^2-\frac{13}{14}\ge-\frac{13}{14}\)

=> bt đạt GTNN =-13/14 

c. \(\left(x^2-x+1\right)^2\ge0\) vs mọi x

=> \(\left(x^2-x+1\right)^2+2016\ge2016\)

=> bt đạt GTNN =2016

23 tháng 7 2016

a) 8x-2x^2=-2(x^2-4x)=-2[(x^2-4x+4)-4]=-2(x-2)^2+8 luôn luôn lớn hơn hoặc bằng 8 với mọi x.                                                                                                                            Dấu bằng xảy ra khi và chỉ khi (x-2)^2=0                                                                                                                       <=> x-2=0                                                                                                                     <=>x=2

Vậy GTLN là 8 khi và chỉ khi x=2