Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}\)
\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-3\right)^2}\)
\(=\left|x-1\right|+\left|x-3\right|\ge\left|\left(x-1\right)+\left(3-x\right)\right|=2\)
Vậy\(A_{min}=2\Leftrightarrow\left(x-1\right)\left(3-x\right)\ge0\)
\(TH1:\hept{\begin{cases}x-1\ge0\\3-x\ge0\end{cases}}\Leftrightarrow1\le x\le3\)
\(TH1:\hept{\begin{cases}x-1\le0\\3-x\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le1\\x\ge3\end{cases}}\left(L\right)\)
Vậy \(A_{min}=2\Leftrightarrow1\le x\le3\)
\(E=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(=2x-1+2x-3\)
\(=4x-4\)
Làm nốt
\(A=5-\sqrt{x+\sqrt{x}+1}\)
ĐK: \(x\ge0\)
=> \(x+\sqrt{x}\ge0\)
=> \(x+\sqrt{x}+1\ge1\)
=> \(\sqrt{x+\sqrt{x}+1}\ge1\)
=> \(-\sqrt{x+\sqrt{x}+1}\le1\)
Do đó: \(A\le4\)
Dấu "=" xảy ra khi x=0
\(B=\frac{3x+6\sqrt{x}}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}+3}{1-\sqrt{x}}\left(ĐK:x\ge0;x\ne1\right)\)
\(=\frac{3x+6\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}+1}{\sqrt{x}+2}-\frac{\sqrt{x}+2}{\sqrt{x}-1}\)
\(=\frac{3x+6\sqrt{x}-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{3x+6\sqrt{x}-x+1-x-4\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{x+2\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+3}{\sqrt{x}+2}\ge\frac{3}{2}\)
Dấu "=" xảy ra khi x=0
a)A= \(5-\sqrt{x+\sqrt{x}+1}\). ĐKXĐ: \(x\ge0\)
Ta luôn có: \(x+\sqrt{x}\ge0\) với \(x\ge0\)
\(\Rightarrow x+\sqrt{x}+1\ge1\)
\(\Rightarrow\sqrt{x+\sqrt{x}+1}\ge1\)
\(\Rightarrow-\sqrt{x+\sqrt{x}+1}\le-1\)
\(\Rightarrow5-\sqrt{x+\sqrt{x}+1}\le4\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Vậy GTLN của A=4 khi x=0
b) B= \(\frac{3x+6\sqrt{x}}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\). ĐKXĐ: \(x\ge0; x\ne1\)
= \(\frac{3x+6\sqrt{x}-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+2\right)^2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
= \(\frac{3x+6\sqrt{x}-x+1-x-4\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\) = \(\frac{x+2\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
= \(\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\) = \(\frac{\sqrt{x}+3}{\sqrt{x}+2}=\frac{\left(\sqrt{x+2}\right)+1}{\sqrt{x+2}}\)
= \(\frac{\sqrt{x}+2}{\sqrt{x}+2}+\frac{1}{\sqrt{x}+2}=1+\frac{1}{\sqrt{x}+2}\)
Ta luôn có: \(\sqrt{x}+2\ge2\) với \(x\ge0; x\ne1\)
\(\Rightarrow\frac{1}{\sqrt{x}+2}\le\frac{1}{2}\)
\(\Rightarrow1+\frac{1}{\sqrt{x}+2}\le\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Vậy GTLN của B=\(\frac{3}{2}\) khi x=0
Mấy bài này dài vật vã ghê =)))))))))))))
1, a, \(\frac{3+4\sqrt{3}}{\sqrt{6}+\sqrt{2}-\sqrt{5}}\)
= \(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{\left(\sqrt{6}+\sqrt{2}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}\)
=\(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{\left(\sqrt{6}+\sqrt{2}\right)^2-5}\)
=\(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{8+4\sqrt{3}-5}\)
= \(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{3+4\sqrt{3}}\)
=\(\sqrt{6}+\sqrt{2}+\sqrt{5}\)
b, M = \(\frac{\sqrt{3}\left(x-1\right)}{\sqrt{x^2}-x+1}\)(ĐKXĐ: \(x\ge0\))
= \(\frac{\sqrt{3}\left(x-1\right)}{x-x+1}\)
= \(\sqrt{3}\left(x-1\right)\)
Thay x = \(2+\sqrt{3}\)(TMĐK) vào M ta có:
M = \(\sqrt{3}\left(2+\sqrt{3}-1\right)=\sqrt{3}\left(1+\sqrt{3}\right)=3+\sqrt{3}\)
Vậy với x = \(2+\sqrt{3}\)thì M = \(3+\sqrt{3}\)
2, Mình chỉ giải câu a thôi nhé:
\(\sqrt{1+b}+\sqrt{1+c}\ge2\sqrt{1+a}\)
\(\Leftrightarrow\left(\sqrt{1+b}+\sqrt{1+c}\right)^2\ge\left(2\sqrt{1+a}\right)^2\)
\(\Leftrightarrow1+b+2\sqrt{\left(1+b\right)\left(1+c\right)}+1+c\ge4\left(1+a\right)\)
\(\Leftrightarrow2+b+c+2\sqrt{\left(1+b\right)\left(1+c\right)}\ge4\left(1+a\right)\left(1\right)\)
Vì \(\left(\sqrt{1+b}-\sqrt{1+c}\right)^2\ge0\)
\(\Rightarrow2+b+c\ge2\sqrt{\left(1+b\right)\left(1+c\right)}\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\Rightarrow4+2\left(b+c\right)+2\sqrt{\left(1+b\right)\left(1+c\right)}\ge4\left(1+a\right)+2\sqrt{\left(1+b\right)\left(1+c\right)}\)
\(\Leftrightarrow4+2\left(b+c\right)\ge4\left(1+a\right)\)
\(\Leftrightarrow4+2\left(b+c\right)\ge4+4a\)
\(\Leftrightarrow2\left(b+c\right)\ge4a\)
\(\Leftrightarrow b+c\ge2a\)
4*. Thật ra cái này mình xài làm trội, làm giảm là được mà
Đặt A = \(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{n}}\)
\(\frac{1}{2}A=\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+....+\frac{1}{2\sqrt{n}}\)
\(\frac{1}{2}A=\frac{1}{\sqrt{2}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{3}}+....+\frac{1}{\sqrt{n}+\sqrt{n}}\)
Ta có: \(\frac{1}{\sqrt{2}+\sqrt{2}}>\frac{1}{\sqrt{3}+\sqrt{2}}\)
\(\frac{1}{\sqrt{3}+\sqrt{3}}>\frac{1}{\sqrt{4}+\sqrt{3}}\)
+ .........................................................
\(\frac{1}{\sqrt{n}+\sqrt{n}}>\frac{1}{\sqrt{n+1}+\sqrt{n}}\)
Cộng tất cả vào
\(\Rightarrow\frac{1}{\sqrt{2}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{3}}+...+\frac{1}{\sqrt{n}+\sqrt{n}}>\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{3}}+...+\frac{1}{\sqrt{n+1}+\sqrt{n}}\)\(\frac{1}{2}A>\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{3}}{4-3}+...+\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}\)
\(\frac{1}{2}A>\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{n+1}-\sqrt{n}\)
\(\frac{1}{2}A>\sqrt{n+1}-\sqrt{2}\)
\(A>2\sqrt{n+1}-2\sqrt{2}>2\sqrt{n+1}-3\)
\(A+1>2\sqrt{n+1}-3+1\)
\(A+1>2\sqrt{n+1}-2\)
\(A+1>2\left(\sqrt{n+1}-1\right)\)
Vậy ta có điều phải chứng minh.
c/ \(C'=\frac{1}{\frac{1}{3-2\sqrt{x}}}.\frac{1}{\frac{1}{\sqrt{3-2\sqrt{x}}}+1}=\frac{\sqrt{\left(3-2\sqrt{x}\right)^3}}{1+\sqrt{\left(3-2\sqrt{x}\right)}}\)
Đặt \(\sqrt{\left(3-2\sqrt{x}\right)}=a\)
\(\Rightarrow C'=\frac{a^3}{a+1}=a^2-a+1-\frac{1}{a+1}\)
Đế C' nguyên thì a + 1 là ước của 1
\(\Rightarrow a=0\)
\(\Rightarrow\sqrt{\left(3-2\sqrt{x}\right)}=0\)
\(\Rightarrow x=\frac{9}{4}\left(l\right)\)
Vậy không có x.
Không biết có nhầm chỗ nào không nữa. Lam biếng kiểm tra lại quá. You kiểm tra lại hộ nhé. Thanks
a/ \(C=\left(\frac{2\sqrt{x}}{2x-5\sqrt{x}+3}-\frac{5}{2\sqrt{x}-3}\right):\left(3+\frac{2}{1-\sqrt{x}}\right)\)
\(=\left(\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}-\frac{5}{2\sqrt{x}-3}\right):\left(\frac{3\sqrt{x}-5}{\sqrt{x}-1}\right)\)
\(=\left(\frac{2\sqrt{x}-5\sqrt{x}+5}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}\right):\left(\frac{3\sqrt{x}-5}{\sqrt{x}-1}\right)\)
\(=\frac{5-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-3\right)}.\frac{\sqrt{x}-1}{3\sqrt{x}-5}\)
\(=\frac{1}{3-2\sqrt{x}}\)
Câu b, c tự làm nhé
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
a/ \(A=\frac{1}{5+2\sqrt{6-x^2}}\)
Có: \(-x^2\le0\)với mọi x
=> \(6-x^2\le6\)
=> \(0\le\sqrt{6-x^2}\le\sqrt{6}\)
=> \(5\le5+2\sqrt{6-x^2}\le5+2\sqrt{6}\)
=> \(\frac{1}{5+2\sqrt{6}}\le\frac{1}{5+2\sqrt{6-x^2}}\le\frac{1}{5}\); với mọi x
=> \(\hept{\begin{cases}maxA=\frac{1}{5}\Leftrightarrow\sqrt{6-x^2}=0\Leftrightarrow x=\pm\sqrt{6}\\minA=\frac{1}{5+2\sqrt{6}}\Leftrightarrow\sqrt{6-x^2}=\sqrt{6}\Leftrightarrow x=0\end{cases}}\)
Vậy:...
b/ \(B=\sqrt{-x^2+2x+4}=\sqrt{-\left(x-1\right)^2+5}\)
Có: \(-\left(x-1\right)^2\le0\)với mọi x
=> \(-\left(x-1\right)^2+5\le5\)
=> \(0\le\sqrt{-\left(x-1\right)^2+5}\le\sqrt{5}\)
=> \(0\le B\le\sqrt{5}\)với mọi x
=> \(\hept{\begin{cases}maxB=\sqrt{5}\Leftrightarrow-\left(x-1\right)^2=0\Leftrightarrow x=1\\minB=0\Leftrightarrow\left(x-1\right)^2=5\Leftrightarrow x=\pm\sqrt{5}+1\end{cases}}\)
Vậy:...
a)Ta có:
\(0\le2\sqrt{6-x^2}\le2\sqrt{6}\)
\(\Leftrightarrow\frac{1}{5}\ge\frac{1}{5+2\sqrt{6-x^2}}\ge\frac{1}{5+2\sqrt{6}}=5-2\sqrt{6}\)
\(\Rightarrow\hept{\begin{cases}MAX\left(A\right)=\frac{1}{5}\\MIN\left(A\right)=5-2\sqrt{6}\end{cases}}\)Dấu "=" xảy ra khi \(\hept{\begin{cases}x=0\left(MIN\right)\\x=\sqrt{6}\left(MAX\right)\end{cases}}\)