Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có H = x2 + 5y2 + 4xy - 6x + 5y - 9
= [(x2 + 4xy + 4y2) - 6x - 12y + 9] + (y2 + 17y + \(\frac{289}{4}\)) - \(\frac{361}{4}\)
= [(x + 2y)2 - 2(x + 2y).3 + 32] + (y2 + 2.y.\(\frac{17}{2}\)+ \(\left(\frac{17}{2}\right)^2\)) - \(\frac{361}{4}\)
= (x + 2y - 3)2 + \(\left(y+\frac{17}{2}\right)^2\) - \(\frac{361}{4}\)
Thấy (x + 2y - 3)2 ≥ 0 với mọi x; y
\(\left(y+\frac{17}{2}\right)^2\ge0\) với mọi y
=> (x + 2y - 3)2 + \(\left(y+\frac{17}{2}\right)^2\) ≥ 0 với mọi x; y
=> (x + 2y - 3)2 + \(\left(y+\frac{17}{2}\right)^2\) - \(\frac{361}{4}\) ≥ \(\frac{-361}{4}\) với mọi x; y
=> H ≥ \(\frac{-361}{4}\) với mọi x; y
Dấu "=" xảy ra khi ...
Bn tự giải tiếp.
P/s: ko chắc đúng
Có link câu này bạn tham khảo xem có được không nhé
https://h.vn/hoi-dap/question/535151.html
Học tốt nhé!
GTNN nak !!!
\(B=x^2-4xy+5y^2+10x-22y+28\)
\(=\left(x^2-4xy+4y^2\right)+\left(10x-20y\right)+\left(y^2-2y+1\right)+27\)
\(=\left[\left(x-2y\right)^2+10\left(x-2y\right)+25\right]+\left(y^2-2y+1\right)+2\)
\(=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\) có GTNN là 2
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)
Vậy \(B_{min}=2\) tại \(x=-3;y=1\)
Bài 1 :
\(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0^2\)
\(a^2+b^2+c^2+2ab+2ac+2bc=0\)
\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)\)
\(\Rightarrow\left[a^2+b^2+c^2\right]^2=\left[-2\left(ab+bc+ac\right)\right]^2\)
\(\Rightarrow a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2=4\left(a^2b^2+b^2c^2+a^2c^2+2ab.bc+2bc.ac+2ab.ac\right)\)
\(\Rightarrow a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2=4a^2b^2+4b^2c^2+4a^2c^2+8abc\left(a+b+c\right)\)
Mà \(a+b+c=0\)
\(\Rightarrow a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2=4a^2b^2+4b^2c^2+4a^2c^2\)
Bớt cả 2 vế đi \(2a^2b^2+2a^2c^2+2b^2c^2;\)có :
\(\Rightarrow a^4+b^4+c^4=2a^2b^2+2a^2c^2+2b^2c^2\)
Cộng cả 2 vế với \(a^4+b^4+c^4;\)có :
\(2\left(a^4+b^4+c^4\right)=\left(a^2+b^2+c^2\right)^2\)( Hằng đẳng thức bình phương tổng 3 hạng tử )
Vậy ...
Bình phương cả 2 vế của a + b + c = 0,ta có :
a2 + b2 + c2 + 2(ab + bc + ca) => a2 + b2 + c2 = -2(ab + bc + ca).Bình phương cả 2 vế của đẳng thức bên,ta có :
a4 + b4 + c4 + 2(a2b2 + b2c2 + a2c2) = 4[a2b2 + b2c2 + a2c2 + 2abc(a + b + c)] = 4(a2b2 + b2c2 + a2c2)
=> a4 + b4 + c4 = 2(a2b2 + b2c2 + a2c2)
=> (a2 + b2 + c2)2 = a4 + b4 + c4 + 2(a2b2 + b2c2 + a2c2) = a4 + b4 + c4 + a4 + b4 + c4 = 2(a4 + b4 + c4)
Bạn ko hiểu chỗ nào thì hỏi mình nhé!
\(A=x^2-6x+11\)
\(A=\left(x^2-6x+9\right)+2\)
\(A=\left(x-3\right)^2+2\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-3\right)^2=0\)
\(\Leftrightarrow\)\(x-3=0\)
\(\Leftrightarrow\)\(x=3\)
Vậy GTNN của \(A\) là \(2\) khi \(x=3\)
\(B=x^2-20x+101\)
\(B=\left(x^2-20x+100\right)+1\)
\(B=\left(x-10\right)^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(x-10\right)^2=0\)
\(\Leftrightarrow\)\(x-10=0\)
\(\Leftrightarrow\)\(x=10\)
Vậy GTNN của \(B\) là \(1\) khi \(x=10\)
Chúc bạn học tốt ~
\(A=x^2-6x+11\)
\(A=\left(x^2-6x+9\right)+2\)
\(A=\left(x-3\right)^2+2\)
Mà \(\left(x-3\right)^2\ge0\)
\(\Rightarrow A\ge2\)
Dấu "=" xảy ra khi : \(x-3=0\Leftrightarrow x=3\)
Vậy \(A_{Min}=2\Leftrightarrow x=3\)
b) \(B=x^2-20x+101\)
\(B=\left(x^2-20x+100\right)+1\)
\(B=\left(x-10\right)^2+1\)
Mà \(\left(x-10\right)^2\ge0\)
\(\Rightarrow B\ge1\)
Dấu "=" xảy ra khi : \(x-10=0\Leftrightarrow x=10\)
Vậy \(B_{Min}=1\Leftrightarrow x=10\)
c) \(C=x^2-4xy+5y^2+10x-22y+28\)
\(C=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+28\)
\(C=\left[\left(x-2y\right)^2+2\left(x-2y\right).5+25\right]+\)\(\left(y^2-2y+1\right)+2\)
\(C=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\)
Mà \(\left(x-2y+5\right)^2\ge0\)
\(\left(y-1\right)^2\ge0\)
\(\Rightarrow C\ge2\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Vây \(C_{Min}=2\Leftrightarrow\left(x;y\right)=\left(-3;1\right)\)