Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(B=\frac{x}{x+1}+\frac{2x-3}{x-1}-\frac{2x^2-x-3}{x^2-1}\)
\(B=\frac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{\left(2x-3\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{2x^2-x-3}{\left(x-1\right)\left(x+1\right)}\)
\(B=\frac{\left(x^2-x\right)+\left(2x^2+2x-3x-3\right)-\left(2x^2-x-3\right)}{\left(x+1\right)\left(x-1\right)}\)
\(B=\frac{x^2-x+2x^2-x-3-2x^2+x+3}{\left(x+1\right)\left(x-1\right)}\)
\(B=\frac{x^2-x}{\left(x+1\right)\left(x-1\right)}\)
\(B=\frac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(B=\frac{x}{x+1}\)
MÌnh nghĩ đề câu b là với x>-4 mới đúng chứ
\(B=\frac{x}{x+1}+\frac{2x-3}{x-1}-\frac{2x^2-x-3}{\left(x^2-1\right)}.\)
\(=\frac{x\left(x-1\right)+\left(2x-3\right)\left(x+1\right)-2x^2+x+3}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^2-x+2x^2-x-3-2x^2+x+3}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^2-x}{\left(x-1\right)\left(x+1\right)}=\frac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{x}{x+1}\)
\(\Rightarrow A.B=\frac{x}{\left(x+1\right)}.\frac{x\left(x+1\right)}{\left(x-2\right)}=\frac{x^2}{\left(x-2\right)}=\frac{x^2-4+4}{\left(x-2\right)}\)
\(=\frac{\left(x-2\right)\left(x+2\right)+4}{\left(x-2\right)}=x+2+\frac{4}{x-2}=x-2+\frac{4}{x-2}+4\)
Áp dụng BĐT Cô - Si cho 2 số dương \(x-2;\frac{4}{x-2}\)ta có :
\(x-2+\frac{4}{x-2}\ge2\sqrt{\frac{\left(x-2\right).4}{x-2}}=2\sqrt{4}=4\)
\(\Rightarrow x-2+\frac{4}{x-2}\ge4\Rightarrow x-2+\frac{4}{x-2}+4\ge8\)
Hay \(S_{min}=4\Leftrightarrow x-2=\frac{4}{x-2}\)
\(\Rightarrow\frac{\left(x-2\right)^2}{\left(x-2\right)}=\frac{4}{x-2}\Rightarrow x^2+4x+4=4\)
\(\Rightarrow x^2+4x=0\Rightarrow x\left(x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=-4\left(ktm\right)\end{cases}}\)\(\Rightarrow...\)
giải câu b trc nha
= ((x-1)^2+2009]/x^2=(x-1)^2/x^2+2009
vậy min=2009 khi x=1
https://olm.vn//hoi-dap/question/57101.html
Tham khảo đây nhá bạn
đặt x^2-7x=y=> \(y\ge-\frac{49}{4}\) (*)
\(A=y\left(y+12\right)=y^2+12y=\left(y+6\right)^2-36\ge-36\)
đẳng thức khi y=-6 thủa mãn đk (*)
Vậy: GTNN của A=-36 khí y=-6 =>\(\left[\begin{matrix}x=1\\x=6\end{matrix}\right.\)
\(A=\frac{1}{4}\left(x+2\right)^2-2\ge-2\)
\(A_{min}=-2\) khi \(x=-2\)
Với 2 câu B, C cần kiến thức lớp 9 để làm:
\(Bx^2+2Bx+3B=x^2-2x+2\)
\(\Leftrightarrow\left(B-1\right)x^2+2\left(B+1\right)x+3B-2=0\)
\(\Delta'=\left(B+1\right)^2-\left(B-1\right)\left(3B-2\right)\ge0\)
\(\Leftrightarrow2B^2-7B+1\le0\Rightarrow\frac{7-\sqrt{41}}{4}\le B\le\frac{7+\sqrt{41}}{4}\)
\(B_{min}=\frac{7-\sqrt{41}}{4}\) khi \(x=\frac{\sqrt{41}-1}{4}\)
\(2Cx^2+4Cx+9C=x^2-2x-1\)
\(\Leftrightarrow\left(2C-1\right)x^2+2\left(2C+1\right)x+9C+1=0\)
\(\Delta'=\left(2C+1\right)^2-\left(2C-1\right)\left(9C+1\right)\ge0\)
\(\Leftrightarrow14C^2-11C-2\le0\Rightarrow\frac{11-\sqrt{233}}{28}\le C\le\frac{11+\sqrt{233}}{28}\)
\(C_{min}=\frac{11-\sqrt{233}}{28}\) khi \(x=\frac{\sqrt{233}-11}{8}\)
a.
\(A=\frac{x^2+x^2-2x+1}{x^2}=1+\frac{\left(x-1\right)^2}{x^2}\ge1\)
Giá trị nhỏ nhất của A là 1 khi và chỉ khi x-1=0 <=> x=1
b. \(B=\frac{2014x^2+4x^2-4x+1}{x^2}=2014+\frac{\left(2x-1\right)^2}{x^2}\ge2014\)
Giá trị nhỏ nhất của B là 2014 khi và chỉ khi 2x-1=0 <=> x=1/2
\(A=\frac{2x^2+2}{x^2+2x+1}=\frac{x^2+1+\left(x^2+1\right)}{x^2+2x+1}\ge\frac{x^2+1+2x}{x^2+2x+1}=1\)
Dấu \(=\)khi \(x=1\)