K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2019

\(b,ĐKXĐ:x>0\)

\(D=2011\sqrt{x}-2+\frac{1}{\sqrt{x}}\)\(=2011\sqrt{x}+\frac{1}{\sqrt{x}}-2\)

Áp dụng bđt Cauchy cho 2 số dương \(2011\sqrt{x}\)\(\frac{1}{\sqrt{x}}\)ta được:

\(2011\sqrt{x}+\frac{1}{\sqrt{x}}\ge2\sqrt{2011\sqrt{x}.\frac{1}{\sqrt{x}}}\)

\(\Leftrightarrow2011\sqrt{x}+\frac{1}{\sqrt{x}}-2\ge2\sqrt{2011}-2\)

\(\Leftrightarrow D\ge2\sqrt{2011}-2\)

Dấu "=" xảy ra \(\Leftrightarrow2011\sqrt{x}=\frac{1}{\sqrt{x}}\Leftrightarrow x=\frac{1}{2011}\left(TMĐK\right)\)

27 tháng 7 2019

\(B=2x+3\sqrt{x}-28\)

Ta có điều kiện: \(x\ge0\)

Do đó \(B\ge2\cdot0+3\cdot0-28=-28\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=0\)

\(C=\frac{2011x-2\sqrt{x}+1}{\sqrt{x}}\)

\(C=2011\sqrt{x}-2+\frac{1}{\sqrt{x}}\)

Áp dụng bất đẳng thức Cô-si :

\(C\ge2\sqrt{\frac{2011\sqrt{x}}{\sqrt{x}}}-2=2\sqrt{2011}-2\)

Dấu "=" xảy ra \(\Leftrightarrow2011\sqrt{x}=\frac{1}{\sqrt{x}}\Leftrightarrow x=\frac{1}{2011}\)

28 tháng 11 2017

Áp dụng BĐT AM-GM ta có:

\(A=\frac{2011x+2012\sqrt{1-x^2}+2013}{\sqrt{1-x^2}}\)\(=\frac{2011x+2013}{\sqrt{1-x^2}}+2012\)

\(=\frac{2012\left(x+1\right)+\left(1-x\right)}{\sqrt{1-x^2}}+2012\)\(\ge\frac{2\sqrt{2012\left(x+1\right)\left(1-x\right)}}{\sqrt{1-x^2}}+2012\)

\(\ge\frac{2\sqrt{2012\left(1-x^2\right)}}{\sqrt{1-x^2}}+2012=2\sqrt{2012}+2012\)

29 tháng 7 2021

Trả lời:

a, \(A=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}-3}{\sqrt{x}-3}-\frac{2x-\sqrt{x}-3}{x-9}\) \(\left(đkxđ:x\ge0;x\ne9\right)\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}+\frac{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{x-9}-\frac{2x-\sqrt{x}-3}{x-9}\)

\(=\frac{x-3\sqrt{x}}{x-9}+\frac{2x+3\sqrt{x}-9}{x-9}-\frac{2x-\sqrt{x}-3}{x-9}\)

\(=\frac{x-3\sqrt{x}+2x+3\sqrt{x}-9-2x+\sqrt{x}+3}{x-9}\)

\(=\frac{x+\sqrt{x}-6}{x-9}\)

27 tháng 8 2020

a) Ta có: \(A=\sqrt{4x^2+4x+2}=\sqrt{\left(4x^2+4x+1\right)+1}\)

\(=\sqrt{\left(2x+1\right)^2+1}\ge\sqrt{1}=1\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(2x+1\right)^2=0\Rightarrow x=-\frac{1}{2}\)

Vậy Min(A) = 1 khi x = -1/2

b) Ta có: \(B=\sqrt{2x^2-4x+5}=\sqrt{\left(2x^2-4x+2\right)+3}\)

\(=\sqrt{2\left(x-1\right)^2+3}\ge\sqrt{3}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy Min(B) = \(\sqrt{3}\) khi x = 1

21 tháng 9 2020

a) đk: \(x\ge0;x\ne\left\{\frac{1}{4};1\right\}\)

\(P=\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1}\right)\cdot\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(P=\left[\frac{\left(2x+\sqrt{x}-1\right)\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}+1\right)\sqrt{x}}{x-1}\right]\cdot\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(P=\frac{\left(x-1\right)\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{\left(\sqrt{x}+1\right)\sqrt{x}}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(P=\frac{x+\sqrt{x}}{x+\sqrt{x}+1}-\frac{\sqrt{x}}{2\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)

\(P=\frac{x+\sqrt{x}}{x+\sqrt{x}+1}\)

21 tháng 9 2020

b) Ta có: 

\(P=\frac{x+\sqrt{x}}{x+\sqrt{x}+1}=\frac{\left(x+\sqrt{x}+1\right)-1}{x+\sqrt{x}+1}=1-\frac{1}{x+\sqrt{x}+1}\)

Mà \(x+\sqrt{x}\ge0\left(\forall x\right)\)

\(\Leftrightarrow x+\sqrt{x}+1\ge1\left(\forall x\right)\)

\(\Leftrightarrow\frac{1}{x+\sqrt{x}+1}\le1\left(\forall x\right)\)

\(\Leftrightarrow P=1-\frac{1}{x+\sqrt{x}+1}\ge0\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(x+\sqrt{x}=0\Leftrightarrow x=0\)

Vậy Min(P) = 0 khi x = 0