Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=xy\left(x-2\right)\left(y+6\right)+12x^2-24x+3y^2+18y+36\)
\(=\left(x^2-2x\right)\left(y^2+6y\right)+\left(12x^2+24x+12\right)+\left(3y^2+18y+9\right)+15\)
\(=\left[\left(x-1\right)^2-1\right]\left[\left(y+3\right)^2-9\right]+12\left(x-1\right)^2+3\left(y+3\right)^2+15\)
\(=3\left(x-1\right)^2+2\left(y+3\right)^2+15\)
Do đó \(P\ge15\)
\(\Rightarrow P>0\)
Suy ra P luôn dương
Câu 1/ phân tích nhân tử là xong nên không giải.
Câu 2/ Ta có:
\(Q=\dfrac{a}{2\sqrt{b}-5}+\dfrac{b}{2\sqrt{c}-5}+\dfrac{c}{2\sqrt{a}-5}\ge\dfrac{3\sqrt[3]{abc}}{\sqrt[3]{\left(2\sqrt{b}-5\right)\left(2\sqrt{c}-5\right)\left(2\sqrt{a}-5\right)}}\)
\(=\dfrac{3\sqrt[3]{125.abc}}{\sqrt[3]{\left(2\sqrt{b}-5\right).5.\left(2\sqrt{c}-5\right).5.\left(2\sqrt{a}-5\right).5}}\)
\(\ge\dfrac{3\sqrt[3]{125abc}}{\sqrt[3]{\dfrac{\left(2\sqrt{a}-5+5\right)^2}{4}.\dfrac{\left(2\sqrt{b}-5+5\right)^2}{4}.\dfrac{\left(2\sqrt{c}-5+5\right)^2}{4}}}\) (Vì \(a,b,c>\dfrac{25}{4}\))
\(=\dfrac{3\sqrt[3]{125abc}}{\sqrt[3]{abc}}=15\)
Dấu = xảy ra khi \(a=b=c=25\)
Do \(a,b,c>\frac{25}{4}\)(gt) nên suy ra \(2\sqrt{a}-5>0,2\sqrt{b}-5>0,2\sqrt{c}-5>0\)
Áp dụng bđt cô - si cho 2 số không âm, ta được:
\(\frac{a}{2\sqrt{b}-5}+2\sqrt{b}-5\ge2\sqrt{a}\)
\(\frac{b}{2\sqrt{c}-5}+2\sqrt{c}-5\ge2\sqrt{b}\)
\(\frac{c}{2\sqrt{a}-5}+2\sqrt{a}-5\ge2\sqrt{c}\)
Cộng từng vế của các bđt trên, ta được:
\(\text{ Σ}_{cyc}\frac{a}{2\sqrt{b}-5}+\text{ Σ}_{cyc}\left(2\sqrt{b}\right)-15\ge\text{ Σ}_{cyc}\left(2\sqrt{a}\right)\)
Suy ra \(\text{}\text{}\text{Σ}_{cyc}\frac{a}{2\sqrt{b}-5}\ge15\)
hay \(Q\ge15\)
(Dấu "="\(\Leftrightarrow a=b=c=25\))
Hệ khá là dễ
\(\left\{{}\begin{matrix}\left(x+1\right)^2+y=xy+4\left(1\right)\\4x^2-24x+35=5\left(\sqrt{3y-11}+\sqrt{y}\right)\left(2\right)\end{matrix}\right.\)ĐKXĐ:\(y\ge\frac{11}{3}\)
\(\left(1\right)\Leftrightarrow x^2+2x+1+y-xy-4=0\)\(\Leftrightarrow\left(x-1\right)\left(x+3\right)-y\left(x-1\right)=0\)\(\Leftrightarrow\left(x-1\right)\left(x+3-y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\y=x+3\end{matrix}\right.\)(đến đây giải từng TH đều thay vào pt (2) bạn nhé)
\(\left\{{}\begin{matrix}\left(x+1\right)^2+y=xy+4\left(1\right)\\4x^2-24x+35=5\left(\sqrt{3y-11}+\sqrt{y}\right)\left(2\right)\end{matrix}\right.\)
\(Đkxđ:\left\{{}\begin{matrix}y\ge\frac{11}{3}\\y\ge0\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left(x+1\right)^2+y=xy+4\)
\(\Leftrightarrow\left(x+1\right)^2-4=y\left(x-1\right)\)
\(\Leftrightarrow y=\frac{\left(x+1\right)^2-4}{x-1}=\frac{x^2+2x-3}{x-1}\)
\(\Leftrightarrow y=\frac{\left(x-1\right)\left(x+3\right)}{x-1}=x+3\)
\(\Rightarrow y=x+3\Rightarrow x+3\ge\frac{11}{3}\Rightarrow y\ge\frac{2}{3}\)
Thay: \(y=x+3\) vào \(\left(2\right)\) ta được:
\(4x^2-24x+35=5\left(\sqrt{3\left(x+3\right)-11}+\sqrt{x+3}\right)\)
\(\Leftrightarrow4x^2-24x+35=5\left(\sqrt{3x-2}+\sqrt{x+3}\right)\)
\(\Leftrightarrow\left(2x-7\right)\left(2x-5\right)=\frac{5\left(3x-2-x-3\right)}{\sqrt{3x-2}-\sqrt{x+3}}\)
\(\Leftrightarrow\left(2x-7\right)\left(2x-5\right)=\frac{5\left(2x-5\right)}{\sqrt{3x-2}-\sqrt{x+3}}\)
\(\Leftrightarrow\left(2x-5\right)\left(2x-7-\frac{5}{\sqrt{3x-2}-\sqrt{x+3}}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\2x-7=\frac{5}{\sqrt{3x-2}-\sqrt{x+3}}\end{matrix}\right.\)
\((*)\) \(x=\frac{5}{2}\Rightarrow y=\frac{11}{2}\left(tmđk\right)\)
\((*)\) \(2x-7=\frac{5}{\sqrt{3x-2}-\sqrt{x+3}}\)
Vì: \(x\ge\frac{2}{3}\Rightarrow2x-7-\frac{5}{\sqrt{3x-2}-\sqrt{x+3}}< 0\)
\(\Rightarrow Vô-nghiệm\)
Vậy hệ phương trình có nghiệm là: \(\left(\frac{5}{2};\frac{11}{2}\right)\)