K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2018

A = \(\left(x+3\right)^2+|y-5|+5\)

∀ x thì \(\left(x+3\right)^2\ge0\)

\(|y-5|\ge0\)

\(\Rightarrow\left(x+3\right)^2+|y-5|+5\ge0+0+5\)

\(\Rightarrow A\ge5\)

Dấu = xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+3\right)^2=0\\|y-5|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3=0\\y-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=5\end{matrix}\right.\)

Vậy GTNN của A = 5 \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=5\end{matrix}\right.\)

Mấy câu sau bạn áp dụng tương tự nhé!!!

13 tháng 12 2018

Giúp mình với mọi người ơi!!! huhu

5 tháng 4 2020

Bài 1 :

a) Ta thấy : \(\left(x^2-9\right)^2\ge0\)

                   \(\left|y-2\right|\ge0\)

\(\Leftrightarrow A=\left(x^2-9\right)^2+\left|y-2\right|-1\ge-1\)

Dấu " = " xảy ra :

\(\Leftrightarrow\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\in\left\{3;-3\right\}\\y=2\end{cases}}\)

Vậy \(Min_A=-1\Leftrightarrow\left(x;y\right)\in\left\{\left(3;2\right);\left(-3;2\right)\right\}\)

b) Ta thấy : \(B=x^2+4x-100\)

\(=\left(x+4\right)^2-104\ge-104\)

Dấu " = " xảy ra :

\(\Leftrightarrow x+4=0\)

\(\Leftrightarrow x=-4\)

Vậy \(Min_B=-104\Leftrightarrow x=-4\)

c) Ta thấy : \(C=\frac{4-x}{x-3}\)

\(=\frac{3-x+1}{x-3}\)

\(=-1+\frac{1}{x-3}\)

Để C min \(\Leftrightarrow\frac{1}{x-3}\)min

\(\Leftrightarrow x-3\)max

\(\Leftrightarrow x\)max

Vậy để C min \(\Leftrightarrow\)\(x\)max

p/s : riêng câu c mình không tìm được C min :( Mong bạn nào giỏi tìm hộ mình

Bài 2 : 

a) Ta thấy : \(x^2\ge0\)

                  \(\left|y+1\right|\ge0\)

\(\Leftrightarrow3x^2+5\left|y+1\right|-5\ge-5\)

\(\Leftrightarrow C=-3x^2-5\left|y+1\right|+5\le-5\)

Dấu " = " xảy ra :

\(\Leftrightarrow\hept{\begin{cases}x=0\\y+1=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)

Vậy \(Max_A=-5\Leftrightarrow\left(x;y\right)=\left(0;-1\right)\)

b) Để B max

\(\Leftrightarrow\left(x+3\right)^2+2\)min

Ta thấy : \(\left(x+3\right)^2\ge0\)

\(\Leftrightarrow\left(x+3\right)^2+2\ge2\)

Dấu " = " xảy ra :

\(\Leftrightarrow x+3=0\)

\(\Leftrightarrow x=-3\)

Vậy \(Max_B=\frac{1}{2}\Leftrightarrow x=-3\)

c) Ta thấy : \(\left(x+1\right)^2\ge0\)

\(\Leftrightarrow x^2+2x+1\ge0\)

\(\Leftrightarrow-x^2-2x-1\le0\)

\(\Leftrightarrow C=-x^2-2x+7\le8\)

Dấu " = " xảy ra :

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy \(Max_C=8\Leftrightarrow x=-1\)

I/ Trắc nghiệm: Câu 1: Gía trị của biểu thức x3y - x2y2 -5 tại x = 1; y = -1 là: A. 0 B. -7 C. 1 D. 6 Câu 2: Kết quả phép nhân hai đơn thức (-\(\dfrac{1}{3}\)x3y)2. (-9x2yz2) là: A. x7y3z2 B. (-x8y3z2) C. x8y3z2 D. Một kết quả khác Câu 3: Bậc của đa thức 7x4 - 4x + 6x3 - 7x4 + x2 + 1 là: A. 0 B. 4 C. 3 D. 7 Câu 4: Nghiệm của đa thức P(x) = 3x + \(\dfrac{1}{5}\)...
Đọc tiếp

I/ Trắc nghiệm:

Câu 1: Gía trị của biểu thức x3y - x2y2 -5 tại x = 1; y = -1 là:

A. 0 B. -7 C. 1 D. 6

Câu 2: Kết quả phép nhân hai đơn thức (-\(\dfrac{1}{3}\)x3y)2. (-9x2yz2) là:

A. x7y3z2 B. (-x8y3z2) C. x8y3z2 D. Một kết quả khác

Câu 3: Bậc của đa thức 7x4 - 4x + 6x3 - 7x4 + x2 + 1 là:

A. 0 B. 4 C. 3 D. 7

Câu 4: Nghiệm của đa thức P(x) = 3x + \(\dfrac{1}{5}\) là:

A. x = \(\dfrac{1}{3}\) B. x = -\(\dfrac{1}{5}\) C. x = \(\dfrac{1}{5}\) D. x = -\(\dfrac{1}{15}\)

Câu 5: Kết quả thu gọn -x5y3 + 3x5y3 - 7x5y3 là :

A. -5x5y3 B. 5x5y3 C. 10x5y3 D. -8x5y3

II/ Tự luận

Bài 1; Thu gọn biểu thức, tìm bậc, hệ số và phần biến

\(\dfrac{-2}{3}\)​x3y2z(3x2yz)2

Bài 2:

a) Tìm đa thức A,biết: A + (x2y - 2xy2 + 5xy + 1) = -2x2y + xy2 - xy -1
b) Tính giá trị của đa thức A, biết x = 1, y = 2

Bài 3: Cho f(x) = 9 - x5 + 4x - 2x3 + x2 - 7x4

g(x) = x5 - 9 + 2x2 + 7x4 + 2x3 - 3x

a) Sắp xếp các đa thức trên theo luỹ thừa giảm dần của biến

b) Tính f(x) + g(x); g(x) - f(x)

Bài 4:

a) Tìm nghiệm của đa thức P(x) = -x + 3

b) Tìm hệ số m của đa thức A(x) = mx2 + 5x - 3

Biết rằng đa thức có 1 nghiệm là x = -2?

1
5 tháng 4 2018

I . Trắc Nghiệm

1B . 2D . 3C . 5A

II . Tự luận

2,a,Ta có: A+(x\(^2\)y-2xy\(^2\)+5xy+1)=-2x\(^2\)y+xy\(^2\)-xy-1

\(\Leftrightarrow\) A=(-2x\(^2\)y+xy\(^2\)-xy-1) - (x\(^2\)y-2xy\(^2\)+5xy+1)

=-2x\(^2\)y+xy\(^2\)-xy-1 - x\(^2\)y+2xy\(^2\)-5xy-1

=(-2x\(^2\)y - x\(^2\)y) + (xy\(^2\)+ 2xy\(^2\)) + (-xy - 5xy ) + (-1 - 1)

= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2

b, thay x=1,y=2 vào đa thức A

Ta có A= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2

= -3 . 1\(^2\) . 2 + 3 .1 . 2\(^2\) - 6 . 1 . 2 -2

= -6 + 12 - 12 - 2

= -8

3,Sắp xếp

f(x) =9-x\(^5\)+4x-2x\(^3\)+x\(^2\)-7x\(^4\)

=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x

g(x) = x\(^5\)-9+2x\(^2\)+7x\(^4\)+2x\(^3\)-3x

=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x

b,f(x) + g(x)=(9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x) + (-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x)

=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x

=(9-9)+(-x\(^5\)+x\(^5\))+(-7x\(^4\)+7x\(^4\))+(-2x\(^3\)+2x\(^3\))+(x\(^2\)+2x\(^2\))+(4x-3x)

= 3x\(^2\) + x

g(x)-f(x)=(-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x) - (9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x)

=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x-9+x\(^5\)+7x\(^4\)+2x \(^3\)-x\(^2\)-4x

=(-9-9)+(x\(^5\)+x\(^5\))+(7x\(^4\)+7x\(^4\))+(2x\(^3\)+2x\(^3\))+(2x\(^2\)-x\(^2\))+(3x-4x)

= -18 + 2x\(^5\) + 14x\(^4\) + 4x\(^3\) + x\(^2\) - x

I/ Trắc nghiêm Câu 1: Gía trị của biểu thức x3y - x2y2 - 5 tại x = 1; y = -1 là: A. 0 B. -7 C. 1 D. 6 Câu 2: Kết quả của phép nhân hai đơn thức (-\(\dfrac{1}{3}\) x3y)2.(-9x2yz2) là: A. x7y3z2 B. (-x8y3z2) C. x8y3z2 D. Một kết quả khác Câu 3: Bậc của đa thức 7x4 - 4x + 6x3 - 7x4 + x2 + 1 là: A. 0 B. 4 C. 3 ...
Đọc tiếp

I/ Trắc nghiêm

Câu 1: Gía trị của biểu thức x3y - x2y2 - 5 tại x = 1; y = -1 là:

A. 0 B. -7 C. 1 D. 6

Câu 2: Kết quả của phép nhân hai đơn thức (-\(\dfrac{1}{3}\) x3y)2.(-9x2yz2) là:

A. x7y3z2 B. (-x8y3z2) C. x8y3z2 D. Một kết quả khác

Câu 3: Bậc của đa thức 7x4 - 4x + 6x3 - 7x4 + x2 + 1 là:

A. 0 B. 4 C. 3 D. 7

Câu 4: Nghiệm của đa thức P(x) = 3x + \(\dfrac{1}{5}\) là:

A. x = \(\dfrac{1}{3}\) B. x = -\(\dfrac{1}{5}\) C. x = \(\dfrac{1}{5}\) D. x = -\(\dfrac{1}{15}\)
Câu 5: Kết quả thu gọn -x5y3 + 3x5y3 - 7x5y3 là :

A. -5x5y3 B. 5x5y3 C. 10x5y3 D. -8x5y3

II/ Phần tự luận

Bài 1: Thu gọn biểu thức, tìm bậc, hệ số và phần biến.

\(\dfrac{-2}{3}\) x3y2z(3x2yz)2

Bài 2:

a) Tìm đa thức A biết: A + (x2y - 2xy2 + 5xy + 1) = -2x2y + xy2 - xy -1

b) Tính giá trị của đa thức A, biết x = 1; y = 2

Bài 3: Cho f(x) = 9 - x5 + 4x - 2x3 + x2 - 7x4

g(x) = x5 - 9 + 2x2 + 7x4 + 2x3 - 3x

a) Sắp xếp các đa thức trên theo luỹ thừa giảm dần của biến

b) Tính f(x) + g(x); g(x) - f(x)

Bài 4:

a) Tìm nghiệm của đa thức P(x) = -x + 3

b) Tìm hệ số m của đa thức A(x) = mx2 + 5x - 3

Biết rằng đa thức có 1 nghiệm là x = -2?
Giúp mình nha. Mk mơn nhìu ạ

2
22 tháng 4 2018

I . Trắc Nghiệm 1B . 2D . 3C . 5A II . Tự luận 2,a,Ta có: A+(x22y-2xy22+5xy+1)=-2x22y+xy22-xy-1 ⇔⇔ A=(-2x22y+xy22-xy-1) - (x22y-2xy22+5xy+1) =-2x22y+xy22-xy-1 - x22y+2xy22-5xy-1 =(-2x22y - x22y) + (xy22+ 2xy22) + (-xy - 5xy ) + (-1 - 1) = -3x22y + 3xy22 - 6xy - 2 b, thay x=1,y=2 vào đa thức A Ta có A= -3x22y + 3xy22 - 6xy - 2 = -3 . 122 . 2 + 3 .1 . 222 - 6 . 1 . 2 -2 = -6 + 12 - 12 - 2 = -8 3,Sắp xếp f(x) =9-x55+4x-2x33+x22-7x44 =9-x55-7x44-2x33+x22+4x g(x) = x55-9+2x22+7x44+2x33-3x =-9+x55+7x44+2x33+2x22-3x b,f(x) + g(x)=(9-x55-7x44-2x33+x22+4x) + (-9+x55+7x44+2x33+2x22-3x) =9-x55-7x44-2x33+x22+4x-9+x55+7x44+2x33+2x22-3x =(9-9)+(-x55+x55)+(-7x44+7x44)+(-2x33+2x33)+(x22+2x22)+(4x-3x) = 3x22 + x g(x)-f(x)=(-9+x55+7x44+2x33+2x22-3x) - (9-x55-7x44-2x33+x22+4x) =-9+x55+7x44+2x33+2x22-3x-9+x55+7x44+2x 33-x22-4x =(-9-9)+(x55+x55)+(7x44+7x44)+(2x33+2x33)+(2x22-x22)+(3x-4x) = -18 + 2x55 + 14x44 + 4x33 + x22 - x

22 tháng 4 2018

hơi khó hiểu

bn chịu khó nha

13 tháng 2 2017

Bài 4:

Ta có: \(B=\frac{x^2+y^2+7}{x^2+y^2+2}=1+\frac{5}{x^2+y^2+2}\)

\(x^2+y^2+2>0\) nên để \(\frac{5}{x^2+y^2+2}\) lớn nhất thì \(x^2+y^2+2\) nhỏ nhất.

Lại có:

\(\left\{\begin{matrix}x^2\ge0\\y^2\ge0\end{matrix}\right.\Rightarrow x^2+y^2\ge0\Rightarrow x^2+y^2+2\ge2\)

\(\Rightarrow\frac{5}{x^2+y^2+2}\le\frac{5}{2}\)

\(\Rightarrow1+\frac{5}{x^2+y^2+2}\le1+2,5\)

\(\Rightarrow B=\frac{x^2+y^2+7}{x^2+y^2+2}\le3,5\)

Vậy \(MAX_B=3,5\) khi \(x=y=0\)

13 tháng 2 2017

5)Ta có 26y chẵn, 2000 chẵn \(\Rightarrow51x\)chẵn \(\Rightarrow x⋮2\)

Mà x nguyên tố \(\Rightarrow x=2\)

Thay x=2 vào ta có

51.2+26y=2000

\(\Rightarrow102+26y=2000\)

\(\Rightarrow26y=1898\)

\(\Rightarrow y=73\)

Vậy \(x=2,y=73\)

AH
Akai Haruma
Giáo viên
19 tháng 3 2019

1.

\(-3x^5y^4+3x^2y^3-7x^2y^3+5x^5y^4\)

\(=(-3x^5y^4+5x^5y^4)+(3x^2y^3-7x^2y^3)\)

\(=2x^5y^4-4x^2y^3\)

2.

\(\frac{1}{2}x^4y-\frac{3}{2}x^3y^4+\frac{5}{3}x^4y-x^3y^4\)

\(=(\frac{1}{2}x^4y+\frac{5}{3}x^4y)-(\frac{3}{2}x^3y^4+x^3y^4)\)

\(=\frac{13}{6}x^4y-\frac{5}{2}x^3y^4\)

3.

\(5x-7xy^2+3x-\frac{1}{2}xy^2\)

\(=(5x+3x)-(7xy^2+\frac{1}{2}xy^2)\)

\(=8x-\frac{15}{2}xy^2\)

AH
Akai Haruma
Giáo viên
19 tháng 3 2019

4.

\(\frac{-1}{5}x^4y^3+\frac{3}{4}x^2y-\frac{1}{2}x^2y+x^4y^3\)

\(=(\frac{-1}{5}x^4y^3+x^4y^3)+(\frac{3}{4}x^2y-\frac{1}{2}x^2y)\)

\(=\frac{4}{5}x^4y^3+\frac{1}{4}x^2y\)

5.

\(\frac{7}{4}x^5y^7-\frac{3}{2}x^2y^6+\frac{1}{5}x^5y^7+\frac{2}{3}x^2y^6\)

\(=(\frac{7}{4}x^5y^7+\frac{1}{5}x^5y^7)+(-\frac{3}{2}x^2y^6+\frac{2}{3}x^2y^6)\)

\(=\frac{39}{20}x^5y^7-\frac{5}{6}x^2y^6\)

6.

\(\frac{1}{3}x^2y^5(-\frac{3}{5}x^3y)+x^5y^6=(\frac{1}{3}.\frac{-3}{5})(x^2.x^3)(y^5.y)+x^5y^6\)

\(=\frac{-1}{5}x^5y^6+x^5y^6=\frac{4}{5}x^5y^6\)

28 tháng 2 2019

a ) \(N=\left(x+1\right)^2+\left(y-\sqrt{2}^2\right)+2008\ge0+0+2008=2008\)

=> MinN đạt được bằng 2008 khi

\(\left\{{}\begin{matrix}x=-1\\y=\sqrt{2}\end{matrix}\right.\)

Thay vào M ,ta có

\(3x+\dfrac{x^2-y^2}{x^2+1}=-3+\dfrac{9-2}{1+1}=-3+3,5=0,5\)

b) Với x , y dương , ta được ngay ĐPCM

Với x âm , y âm , ta cũng được ĐPCM

Vậy nên xét trường hợp x,y trái dấu

\(2x^4y^2\ge0\)

\(7x^3y^5\le0\)

\(\Rightarrow2x^4y^2-7x^3y^5\ge0\) ( ĐPCM)

c)

\(2^{x+1}+2^{x+4}+2^{x+5}=2^5\cdot5^2\)

\(\Rightarrow2^{x+1}\left(1+2^3+2^4\right)=2^5\cdot5^2\)

\(\Rightarrow2^{x+1}\cdot5^2=2^5\cdot5^2\)

\(\Rightarrow2^{x+1}=2^5\Rightarrow x=4\)

17 tháng 9 2019

1) \(5^x+5^{x+2}=650\)

\(\Rightarrow5^x.1+5^x.5^2=650\)

\(\Rightarrow5^x.\left(1+5^2\right)=650\)

\(\Rightarrow5^x.26=650\)

\(\Rightarrow5^x=650:26\)

\(\Rightarrow5^x=25\)

\(\Rightarrow5^x=5^2\)

\(\Rightarrow x=2\)

Vậy \(x=2.\)

Mình chỉ làm câu 1) thôi nhé.

Chúc bạn học tốt!