K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2016

cô-si nhé bạn cần mk làm ko 

24 tháng 2 2016

ta có \(\sqrt[3]{xyz}\le\frac{x+y+z}{3}=\frac{1}{3}\Rightarrow xyz\le\frac{1}{27}\)

   \(\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\le\frac{2\left(x+y+z\right)}{3}=\frac{2}{3}\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\le\frac{8}{27}\)

 do đó xyz(x+y)(y+z)(z+x)\(\le\frac{1}{27}\cdot\frac{8}{27}=\frac{8}{729}\)

 ==>GTLN của biểu thức trên là \(\frac{8}{729}\)

     

28 tháng 1 2016

Đặt \(\frac{\left(x+y+1\right)^2}{xy+x+y}=a\) ( ĐK a > 0 )

=> A = a + 1/a 

(*)  \(\left(x+y+1\right)^2\ge3\left(xy+x+y\right)\)( Nhân 2 vế với hai sau đưa về hằng đẳng thức ) 

=> \(\frac{\left(x+y+1\right)^2}{xy+x+y}\ge3\Leftrightarrow a\ge3\)

TA có \(A=a+\frac{1}{a}=\frac{a}{9}+\frac{1}{a}+\frac{8a}{9}\ge2\sqrt{\frac{a}{9}\cdot\frac{1}{a}}+\frac{8\cdot3}{9}=\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)

Vậy GTNN của A là 10/3 tại x = y= 1 

8 tháng 10 2017

dk \(1\le x\le3\)

\(P^2=x-1+3-x+2\sqrt{\left(x-1\right)\left(3-x\right)}\) =\(2+2\sqrt{\left(x-1\right)\left(3-x\right)}\)

ta co \(p^2\ge2\Rightarrow p\ge\sqrt{2}\) dau = xay ra khi \(\orbr{\begin{cases}x=1\\x=3\end{cases}}\)

\(P^2=2+2\sqrt{\left(x-1\right)\left(3-x\right)}\le2+x-1+3-x=4\) (ap dung bdt amgm)\(\Rightarrow p\le2\)

dau = xay ra khi \(x-1=3-x\Leftrightarrow x=2\) 

kl min p= \(\sqrt{2}khi\orbr{\begin{cases}x=1\\x=3\end{cases}}\) maxp= 2 khix=2

8 tháng 10 2017

\(\text{Đ}\text{ể}Pc\text{ó}ngh\text{ĩa}\Leftrightarrow\sqrt{x-1}\ge0\Leftrightarrow x-1\ge0\Leftrightarrow x\ge1\)>=1\(v\text{à}\sqrt{3-x}\ge0\Leftrightarrow3-x\ge0\Leftrightarrow x\le3\).\(x\ge1V\text{à}x\le3\Rightarrow PKh\text{ô}ngC\text{ó}Ngh\text{ĩa}\)

NV
1 tháng 3 2022

\(P=\left(x^4+y^4+\dfrac{1}{256}+\dfrac{255}{256}\right)\left(\dfrac{1}{x^4}+\dfrac{1}{y^4}+1\right)\)

\(P=\left(x^4+y^4+\dfrac{1}{256}\right)\left(\dfrac{1}{x^4}+\dfrac{1}{y^4}+1\right)+\dfrac{255}{256}\left(\dfrac{1}{x^4}+\dfrac{1}{y^4}+1\right)\)

\(P\ge\left(\dfrac{x^2}{x^2}+\dfrac{y^2}{y^2}+\dfrac{1}{16}\right)^2+\dfrac{255}{256}\left(\dfrac{1}{2}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)^2+1\right)\)

\(P\ge\left(\dfrac{33}{16}\right)^2+\dfrac{255}{256}\left(\dfrac{1}{2}\left(\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\right)^2+1\right)\)

\(P\ge\left(\dfrac{33}{16}\right)^2+\dfrac{255}{256}\left(\dfrac{1}{8}\left(\dfrac{4}{x+y}\right)^4+1\right)\ge\left(\dfrac{33}{16}\right)^2+\dfrac{255}{256}\left(\dfrac{4^4}{8}+1\right)=\dfrac{297}{8}\)

\(P_{min}=\dfrac{297}{8}\) khi \(x=y=\dfrac{1}{2}\)