\(\sqrt{x-2013}+\sqrt{2014-x}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2015

mk mới có lớp 6 ak nhìn ko hiểu gì cả

28 tháng 7 2020

+) \(B=6\sqrt{x-2}+6\sqrt{5-x}\Leftrightarrow B^2=\left(6\sqrt{x-2}+6\sqrt{5-x}\right)^2\)

\(=36\left(x-2\right)+36\left(5-x\right)+72\sqrt{\left(x-2\right)\left(5-x\right)}\ge108\Rightarrow B\ge6\sqrt{3}\)

+) \(A=B+2\sqrt{5-x}\ge6\sqrt{3}\)

Vậy \(A_{min}=6\sqrt{3}\)khi x=5

28 tháng 7 2020

+) Đặt \(a=\sqrt{x-2};b=\sqrt{5-x}\)

+) Ta có: \(a^2+b^2=3\) 

+) \(\left(a^2+b^2\right)\left(6^2+8^2\right)\ge\left(6a+8b\right)^2\Leftrightarrow\left(6a+8b\right)^2\le300\Rightarrow6a+8b\le10\sqrt{3}\)

Dấu = xảy ra khi \(\frac{a}{6}=\frac{b}{8}\Leftrightarrow\frac{\sqrt{x-2}}{6}=\frac{\sqrt{5-x}}{8}\Leftrightarrow\frac{x-2}{36}=\frac{5-x}{64}\Leftrightarrow64x-128=180-36x\Leftrightarrow308=100x\)

\(\Leftrightarrow x=3.08\)

Vậy \(A_{max}=10\sqrt{3}\)khi x=3.08

28 tháng 6 2019

Tìm đc mỗi GTNN, cách tìm GTLN chưa chắc chắn lắm nên mk ko lm nha :D

1/ \(A=\sqrt{\left(x-1\right)^2}+\sqrt{\left(3-x\right)^2}=\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2\)

2/ \(B=\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}=\sqrt{\left(1-\sqrt{x-1}\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}\)

\(=\left|1-\sqrt{x-1}\right|+\left|\sqrt{x-1}+1\right|\ge\left|1-\sqrt{x-1}+\sqrt{x-1}+1\right|=2\)

28 tháng 6 2019

ko sao đâu cứ lm cho mk xem đi

NV
25 tháng 10 2019

1/ ĐKXĐ: \(\left|x\right|;\left|y\right|\le1\)

Nếu x;y cùng âm thì vế trái âm (vô lý)

Nếu x;y trái dấu, giả sử \(x>0;y< 0\)

Do \(\left\{{}\begin{matrix}x\le1\\\sqrt{1-x^2}\le1\end{matrix}\right.\) \(\Rightarrow x\sqrt{1-x^2}< 1\)

\(y< 0\Rightarrow y\sqrt{1-y^2}< 0\Rightarrow x\sqrt{1-x^2}+y\sqrt{1-y^2}< 1\) (vô lý)

Vậy x; y không âm

Khi đó áp dụng BĐT Cô-si:

\(x\sqrt{1-y^2}+y\sqrt{1-x^2}\le\frac{1}{2}\left(x^2+1-y^2+y^2+1-x^2\right)=1\)

Dấu "=" xảy ra \(\Rightarrow\left\{{}\begin{matrix}x^2=1-y^2\\y^2=1-x^2\end{matrix}\right.\) \(\Rightarrow x^2+y^2=1\)

2/ ĐKXĐ: ...

\(A\ge\sqrt{1-x+1+x}=\sqrt{2}\)

\(A_{min}=\sqrt{2}\) khi \(\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

\(A\le\sqrt{\left(1+1\right)\left(1-x+1+x\right)}=2\)

\(A_{max}=2\) khi \(1-x=1+x\Leftrightarrow x=0\)

26 tháng 10 2019

cho mk hỏi bài 2 bn áp dụng tính chất j z ?

29 tháng 6 2019

\(A=\sqrt{1-x}+\sqrt{x+1}\)

\(A^2=\left(\sqrt{1-x}\cdot1+\sqrt{x+1}\cdot1\right)^2\)

Áp dụng BĐT Bunhiacospki ta có:
\(A^2\le\left(1^2+1^2\right)\left(1-x+1+x\right)\)

\(A^2\le4\)

\(A\le2\)

\(A_{max}=2\Leftrightarrow x=0\)

E ms tìm dc MAX thôi ah

NV
29 tháng 6 2019

ĐKXĐ: ....

a/ \(A\le\sqrt{2\left(1-x+1+x\right)}=2\Rightarrow A_{max}=2\) khi \(x=0\)

\(A\ge\sqrt{1-x+1+x}=\sqrt{2}\Rightarrow A_{min}=\sqrt{2}\) khi \(\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

b/ \(B\le\sqrt{2\left(x-2+6-x\right)}=2\sqrt{2}\Rightarrow B_{max}=2\sqrt{2}\) khi \(x=4\)

\(B\ge\sqrt{x-2+6-x}=2\Rightarrow B_{min}=2\) khi \(\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

c/ \(A^2=\left(2x+3y\right)^2=\left(\sqrt{2}.\sqrt{2}x+\sqrt{3}.\sqrt{3}y\right)^2\)

\(\Rightarrow A^2\le\left(2+3\right)\left(2x^2+3y^2\right)\le5.5=25\)

\(\Rightarrow-5\le A\le5\)

\(A_{max}=5\) khi \(x=y=1\)

\(A_{min}=-5\) khi \(x=y=-1\)