Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Max nè : \(\frac{2m+1}{m^2+2}=\frac{m^2+2-m^2+2m-1}{m^2+2}=1+\frac{-\left(m-2\right)^2}{m^2+2}\le1\)
Min nhé: \(\frac{2m+1}{m^2+2}=\frac{4m+2}{2m^2+4}=\frac{-m^2-2+m^2+4m+4}{2\left(m^2+2\right)}\ge-\frac{1}{2}\)
Dấu bằng xảy ra : Max m=2, Min m =-2
Bạn ơi đề là M = \(\dfrac{x^2+x+1}{x^2+4}\) hay M = \(\dfrac{x^2+x+1}{x^2}+4\) vậy bn?
Q = \(\sqrt{x^2+4x+4}+\sqrt{x^2-4x+4}\)=\(\sqrt{\left(x+2\right)^2}+\sqrt{\left(2-x\right)^2}\) = l x+2 l + l 2-x l \(\ge\) l x+2+2-x l = l 4 l = 4
Dấu " = " xảy ra khi và chỉ khi
(x+2)(2-x) \(\ge\)0
<=> x+2 \(\ge\)0 và 2-x \(\ge\) 0
hoặc x+2 \(\le\)0 và 2-x \(\le\)0
<=> x \(\ge\)-2 và x\(\le\)2
hoặc x\(\le\)-2 và x\(\ge\)2
<=> -2\(\le\)x\(\le\)2
vậy GTNN của Q = 4 khi -2\(\le\)x\(\le\)2
2) ĐKXĐ: \(1\le x\le5\)
\(B^2=\left(\sqrt{x-1}+\sqrt{5-x}\right)^2\le\left(1^2+1^2\right)\left(x-1+5-x\right)=8\Rightarrow B\le2\sqrt{2}\)
Xảy ra đẳng thức khi và chỉ khi x = 3
ĐKXĐ: \(x\ge0\)
a/ \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\x+1>0\end{matrix}\right.\) \(\Rightarrow B=\frac{\sqrt{x}}{x+1}\ge0\)
\(B_{min}=0\) khi \(x=0\)
\(B-\frac{1}{2}=\frac{\sqrt{x}}{x+1}-\frac{1}{2}=-\frac{x-2\sqrt{x}+1}{x+1}=-\frac{\left(\sqrt{x}-1\right)^2}{x+1}\le0\)
\(\Rightarrow B\le\frac{1}{2}\Rightarrow B_{max}=\frac{1}{2}\) khi \(x=1\)
b/ Tương tự câu a \(M_{min}=0\)
\(M=\frac{x+2\sqrt{x}+1-\left(x-2\sqrt{x}+1\right)}{x+2\sqrt{x}+1}=1-\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}\le1\)
\(M_{max}=1\) khi \(x=1\)
Lời giải:
\(A=\sqrt{x^2-4x+7}=\sqrt{x^2-4x+4+3}=\sqrt{(x-2)^2+3}\)
Vì \((x-2)^2\geq 0, \forall x\in\mathbb{R}\Rightarrow A=\sqrt{(x-2)^2+3}\geq \sqrt{0+3}=\sqrt{3}\)
Vậy GTNN của $A$ là $\sqrt{3}$ khi $(x-2)^2=0$ hay $x=2$
----------------
\(B=1+\sqrt{2x-x^2+1}=1+\sqrt{2-(x^2-2x+1)}\)
\(=1+\sqrt{2-(x-1)^2}\)
Vì \((x-1)^2\geq 0, \forall x\in\mathbb{R}\Rightarrow 2-(x-1)^2\leq 2\)
\(\Rightarrow B=1+\sqrt{2-(x-1)^2}\leq 1+\sqrt{2}\)
Vậy GTLN của $B$ là $1+\sqrt{2}$. Dấu "=" xảy ra khi \((x-1)^2=0\) hay $x=1$
\(2=a^2+b^2+c^2\ge b^2+c^2\ge2bc\Rightarrow bc\le1\)
Ta có:
\(P^2=\left(a+b+c-abc\right)^2=\left[a\left(1-bc\right)+\left(b+c\right).1\right]^2\)
\(P^2\le\left[a^2+\left(b+c\right)^2\right]\left[\left(1-bc\right)^2+1\right]\)
\(P^2\le\left(a^2+b^2+c^2+2bc\right)\left(b^2c^2-2bc+2\right)\)
\(P^2\le\left(2+2bc\right)\left(b^2c^2-2bc+2\right)\)
\(P^2\le2\left[\left(bc\right)^3-\left(bc\right)^2+2\right]\le2.2=4\)
\(\Rightarrow-2\le P\le2\)
Min, max xảy ra với \(\left(a;b;c\right)=\left(0;-1;-1\right)\) và \(\left(0;1;1\right)\) và các hoán vị