Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A=\(\frac{-2}{9x^2-6x+1+4}\) =\(\frac{-2}{\left(3x-1\right)^2+4}\)\(\ge\)\(\frac{-2}{4}\)=\(\frac{-1}{2}\)
Vậy giá trị nhỏ nhất của A là \(\frac{-1}{2}\)khi x=\(\frac{1}{3}\)
\(A=\frac{2}{6x-5-9x^2}\)
\(A=\frac{2}{-9x^2+6x-1-4}\)
\(A=\frac{2}{-\left(9x^2-6x+1\right)-4}\)
\(A=\frac{2}{-\left(3x-1\right)^2-4}\)
Vì \(-\left(3x-1\right)^2\le0\)
\(\Rightarrow-\left(3x-1\right)^2-4\le-4\)
\(\Rightarrow\frac{2}{-\left(3x-1\right)^2-4}\ge\frac{2}{-4}\)
\(\Rightarrow A\ge\frac{-1}{2}\)
Vậy \(GTNN_A=\frac{-1}{2}\)tại \(x=\frac{1}{3}\)
Nhân A với mẫu rồi viết theo phương trình bậc 2 ẩn x, tham số A tình den ta là được
\(A=\frac{2}{6x-5-9x^2}\)
\(\Leftrightarrow A=\frac{-2}{9x^2-6x+5}\)
\(\Leftrightarrow A=\frac{-2}{\left(3x-1\right)^2+4}\)
Vì \(\left(3x-1\right)^2\ge0\forall x\Rightarrow\left(3x-1\right)^2+4\ge4\)
\(\Rightarrow\frac{1}{\left(3x-1\right)^2+4}\le\frac{1}{4}\)
\(\Rightarrow\frac{-2}{\left(3x-1\right)^2+4}\ge\frac{-2}{4}\)
\(\Rightarrow A\ge\frac{-1}{2}\)
\(MinA=\frac{-1}{2}\Leftrightarrow3x-1=0\Leftrightarrow x=\frac{1}{3}\)
Ta có: A = \(\frac{2}{6x-5-9x^2}=\frac{2}{-\left(9x^2-6x+1\right)-4}=\frac{2}{-\left(3x-1\right)^2-4}\ge-\frac{1}{2}\)
Dấu "=" xảy ra <=> \(3x-1=0\) <=> \(x=\frac{1}{3}\)
Vậy MinA = -1/2 <=> x= 1/3
\(A=\left(2x\right)^2+2.2x.\frac{1}{4}+\frac{1}{16}+\frac{1}{16}=\left(2x+\frac{1}{4}\right)^2+\frac{1}{16}\ge\frac{1}{16}\)
=> GTNN(A)=\(\frac{1}{16}\)
\(B=9x^2+2.3x.1+1+14=\left(3x+1\right)^2+14\ge14\)
=> GTNN(B)=14
\(M=4x^2-4x+1+4=\left(2x-1\right)^2+4\)
vì (2x-1)^2 >= 0 => M >= 4
dầu "=" xảy ra <=> 2x-1=0<=>x=1/2
tương tự nhé
2. b B=4(x^2+3/4x+5/4)
Bài 1:
a)M= 4x2-4x + 5
=4x2-4x+1+4
=(2x-1)2+4
Ta thấy:(2x-1)2+4\(\ge\)0+4=4
Dấu = khi x=1/2
Vậy.....
b)N= 9x2 + 5x
\(=9\left(x+\frac{5}{18}\right)^2-\frac{25}{36}\)
Ta thấy:\(9\left(x+\frac{5}{18}\right)^2-\frac{25}{36}\ge0-\frac{25}{36}=-\frac{25}{36}\)
Dấu = khi x=-5/18
Vậy...
Bài 2:
a)A= x2-6x + 12
=x2-6x+9+3
=(x-3)2+3 >0 với mọi x (Đpcm)
b)B= 4x2 -3x +5
\(=4\left(x-\frac{3}{8}\right)^2+\frac{71}{16}>0\)với mọi x (Đpcm)
bạn sửa thành tìm GTNN
6x-5-9x2=-(9x2-6x+5)
=-[(3x)2-2*3x+1+4]
=-[(3x-1)2+4]
Vì \(\left(3x-1\right)^2\ge0\)
\(\Rightarrow\left(3x-1\right)^2+4\ge4\)
\(\Rightarrow-\left[\left(3x-1\right)^2+4\right]\le-4\)
Theo đề bài \(A=\frac{2}{6x-5-9x^2}\)(vì 2>0 nên A đạt GTNN khi GTLN)
Mẫu đạt GTLN=-4, khi đó \(3x-1=0\Leftrightarrow x=\frac{1}{3}\)
Vậy A đạt GTNN=\(\frac{2}{-4}=-\frac{1}{2}\Leftrightarrow x=\frac{1}{3}\)
\(P=\frac{2x-1}{x^2-2}\left(ĐKXĐ:x\ne\pm\sqrt{2}\right)\)
\(\Leftrightarrow Px^2-2P=2x-1\)
\(\Leftrightarrow Px^2-2x-2P+1=0\)
*Nếu P = 0 thì ....
*Nếu P khác 0 thì pt trên là bậc 2
\(\Delta'=1-P\left(2P+1\right)=-2P^2-P+1\)
Có nghiệm thì \(\Delta'\ge0\Leftrightarrow-1\le P\le\frac{1}{2}\)
Nên Pmin = -1
Đến đây dạng này khi biết kết quả thì phân tích dễ r ha , từ làm nốt câu còn lại nhé , tương tự luôn
\(A=\frac{2}{6x-5-9x^2}=\frac{2}{\left(-9x^2+6x-1\right)-4}=\frac{2}{-\left(3x-1\right)^2-4}\)
Ta thấy :
\(-\left(3x-1\right)^2\le0\forall x\)
\(\Leftrightarrow-\left(3x-1\right)^2-4\le-4\forall x\)
\(\Leftrightarrow A=\frac{2}{-\left(3x-1\right)^2-4}\ge\frac{2}{-4}=-\frac{1}{2}\forall x\) có GTNN là \(-\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(3x-1\right)^2=0\Rightarrow x=\frac{1}{3}\)
Vậy \(A_{min}=-\frac{1}{2}\) tại \(x=\frac{1}{3}\)
Để A nhỏ nhất thì 6x-5-9x2 nhỏ nhất
=>6x-5-9x2 =1=>Min A =2/1=2