K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2019

1) \(D=\left|x^2+x+3\right|+\left|x^2+x-6\right|\)

\(D=\left|x^2+x+3\right|+\left|6-x^2-x\right|\)

Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có :

\(D\ge\left|x^2+x+3+6-x^2-x\right|=\left|9\right|=9\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x^2+x+3\right)\left(6-x^2-x\right)\ge0\Leftrightarrow-3\le x\le2\)

2) \(C=x^2+xy+y^2-3x-3y\)

\(C=\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(xy-x-y+1\right)-3\)

\(C=\left(x-1\right)^2+\left(y-1\right)^2+\left(x-1\right)\left(y-1\right)-3\)

\(C=\left(x-1\right)^2+2\cdot\left(x-1\right)\cdot\frac{\left(y-1\right)}{2}+\frac{\left(y-1\right)^2}{4}+\frac{3\left(y-1\right)^2}{4}-3\)

\(C=\left(x-1-\frac{y-1}{2}\right)^2+\frac{3\left(y-1\right)^2}{4}-3\ge-3\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-1-\frac{y-1}{2}=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

6 tháng 8 2019

3) \(B=x^4-2x^3+3x^2-2x+1\)

\(B=x^2\left(x^2-2x+3-\frac{2}{x}+\frac{1}{x^2}\right)\)

\(B=x^2\left[\left(x^2+2+\frac{1}{x^2}\right)-2\left(x+\frac{1}{x}\right)+1\right]\)

\(B=x^2\left[\left(x+\frac{1}{x}\right)^2-2\left(x+\frac{1}{x}\right)+1\right]\)

\(B=x^2\left(x+\frac{1}{x}-1\right)^2\)

\(B=\left[x\left(x+\frac{1}{x}-1\right)\right]^2\)

\(B=\left(x^2-x+1\right)^2\)

Xét \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

\(\Rightarrow B=\left(x^2-x+1\right)^2\ge\left(\frac{3}{4}\right)^2=\frac{9}{16}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2}\)

26 tháng 9 2019

1 ) \(B=x^4-2x^3+3x^2-2x+1\)

       \(B=x^2\left(x^2-2x+3-\frac{2}{x}+\frac{1}{x^2}\right)\)

       \(B=x^2\left[\left(x^2+2+\frac{1}{x^2}\right)-2\left(x+\frac{1}{x}\right)+1\right]\)

         \(B=x^2\left[\left(x+\frac{1}{x}\right)^2-2\left(x+\frac{1}{x}\right)+1\right]\)

       \(B=x^2\left(x+\frac{1}{x}-1\right)^2\)

       \(B=\left[x\left(x+\frac{1}{x}-1\right)\right]^2\)

       \(B=\left(x^2-x+1\right)^2\)

      Xét \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

           \(\Rightarrow B=\left(x^2-x+1\right)^2\ge\left(\frac{3}{4}\right)^2=\frac{9}{16}\forall x\)

Dấu " = " xảy ra \(\Leftrightarrow x=\frac{1}{2}\)

26 tháng 9 2019

2 ) \(A=ax^2+bx+c\) 

     \(A=a\left(x^2+\frac{bx}{a}+\frac{c}{a}\right)\)

     \(A=a\left(x^2+2.x.\frac{b}{2a}+\frac{b^2}{4a^2}+\frac{c}{a}-\frac{b^2}{4a^2}\right)\)

    \(A=a\left[\left(x+\frac{b}{2a}\right)^2+\frac{4ac-b^2}{4a^2}\right]\)

    \(A=a\left(x+\frac{b}{2a}\right)^2+\frac{4ac-b^2}{4a}\ge\frac{4ac-b^2}{4a}\forall x;a;b;c\)

    Dấu : = " xảy ra \(\Leftrightarrow x=-\frac{b}{2a}\)

Chúc bạn học tốt !!!

\(A=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\\ A=\left(x^2-5x+4\right)\left(x^2-5x+6\right)\\ A=\left(x^2-5x+5-1\right)\left(x^2-5x+5+1\right)\\ A=\left(x^2-5x+5\right)^2-1\ge-1\)

đẳng thức xảy ra khi :

\(x^2-5x+5=0\\ x^2-2.\dfrac{5}{2}x+\dfrac{25}{4}=\dfrac{25}{4}-5\\ \left(x-\dfrac{5}{2}\right)^2=\dfrac{5}{4}\\ \Rightarrow\left[{}\begin{matrix}x-\dfrac{5}{2}=\sqrt{\dfrac{5}{4}}\\x-\dfrac{5}{2}=-\sqrt{\dfrac{5}{4}}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{5}{4}}+\dfrac{5}{2}=\dfrac{\sqrt{5}+5}{2}\\x=-\sqrt{\dfrac{5}{4}}+\dfrac{5}{2}=\dfrac{5-\sqrt{5}}{2}\end{matrix}\right.\)

vậy GTNN của A =-1 tại \(\left[{}\begin{matrix}x=\sqrt{\dfrac{5}{4}}+\dfrac{5}{2}=\dfrac{\sqrt{5}+5}{2}\\x=-\sqrt{\dfrac{5}{4}}+\dfrac{5}{2}=\dfrac{5-\sqrt{5}}{2}\end{matrix}\right.\)

a: \(=\dfrac{27a^6b^3\cdot a^2b^6}{a^8b^8}=27b\)

b: \(=3y^2-5x^2y^3-2y^2+3x^2y^3\)

\(=y^2-2x^2y^3\)

c: \(=6x-y+2x^2+3y-2x^2+x\)

\(=7x+2y\)

d: \(=x-y+2y^2-6xy+\dfrac{10x^2}{y}\)

11 tháng 12 2017

1,

a,\(2x\left(3x^2-5x+3\right)\)

\(=6x^3-10x^2+6x\)

b,\(-2x\left(x^2+5x-3\right)\)

\(=-2x^3-10x^2+6x\)

c,\(-\dfrac{1}{2}x\left(2x^3-4x+3\right)\)

\(=-x^4+2x^2-\dfrac{3}{2}x\)

Bài 2:

a) \(\left(2x-1\right)\left(x^2-5-4\right)\)

\(=\left(2x-1\right)\left(x^2-9\right)\)

\(=2x^3-18x-x^2+9\)

b) \(-\left(5x-4\right)\left(2x+3\right)\)

\(=-\left(10x^2+15x-8x-12\right)\)

\(=-10x^2-7x+12\)

c) \(\left(2x-y\right)\left(4x^2-2xy+y^2\right)\)

\(=8x^3-y^3\)

a: \(=3y^2-5x^2y^3-2y^2+3x^2y^3=y^2-2x^2y^3\)

b: \(=6x-y+2x^2+3y^2-2x^2+x=7x-y+3y^2\)

c: \(=x-y+4y^2-6xy+\dfrac{10x^2}{y}\)

 

23 tháng 9 2018

\(a.\left(9x^2y^3-15x^4y^4\right):3x^2y-\left(2-3x^2y\right)y^2\)

\(=3y^2-5x^2y^3-2y^2+3x^2y^3\)

\(=y^2-2x^2y^3\)

\(b.\left(6x^2-xy\right):x+\left(2x^3y+3xy^2\right):xy-\left(2x-1\right)x\)

\(=6x-y+2x^2+3y-2+x\)

\(=2x^2+7x+2y-2\)

\(c.\left(x^2-xy\right):x+\left(6x^2y^5-9x^3y^4+15x^4y^3\right):\dfrac{3}{2}x^2y^3\)

\(=x-y+4y^2-6xy+10x^2\)

23 tháng 9 2018

Oa, giờ mới biết bác cũng ở box Toán :))