K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2015

\(C=\frac{x^2-4x+5-9}{x^2-4x+5}=1-\frac{9}{x^2-4x+5}\)

ta có: \(x^2-4x+5=x^2-4x+4+1=\left(x-2\right)^2+1\ge1\Leftrightarrow\frac{9}{x^2-4x+5}\le\frac{9}{1}=9\Leftrightarrow\frac{-9}{x^2-4x+5}\ge-9\Leftrightarrow1+\frac{-9}{x^2-4x+5}\ge-8\)

=> Min C=-8 <=> x=2

27 tháng 8 2020

a) Ta có: \(A=\sqrt{4x^2+4x+2}=\sqrt{\left(4x^2+4x+1\right)+1}\)

\(=\sqrt{\left(2x+1\right)^2+1}\ge\sqrt{1}=1\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(2x+1\right)^2=0\Rightarrow x=-\frac{1}{2}\)

Vậy Min(A) = 1 khi x = -1/2

b) Ta có: \(B=\sqrt{2x^2-4x+5}=\sqrt{\left(2x^2-4x+2\right)+3}\)

\(=\sqrt{2\left(x-1\right)^2+3}\ge\sqrt{3}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy Min(B) = \(\sqrt{3}\) khi x = 1

17 tháng 9 2016

Ta có \(\frac{9+4x^2+4x^3+x^4}{x^2+2x}=\frac{x^2\left(x^2+2\right)+2x\left(x^2+2x\right)+9}{x^2+2x}\)

= x2 + 2x + \(\frac{9}{x^2+2x}\)

= (\(\frac{3}{\sqrt{x^2+2x}}-\sqrt{x^2+2x}\))2 + 6 \(\ge6\)

17 tháng 9 2016

\(\frac{9+x^2\left(x^2+2x\right)+2x\left(x^2+2x\right)}{x^2+2x}\)

Nha a viết láu táu nên thiếu mất x

10 tháng 7 2018

1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4 
--> Pmin=4 khi x=4

4 tháng 5 2021

2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1

=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6

<=> M=2t2+t-4\(\ge\)2.12+1-4=-1

Mmin=-1 khi t=1 hay x=2

19 tháng 7 2019

Em làm bài 2 nha!

\(A=\frac{3-4x}{x^2+1}\Leftrightarrow Ax^2+4x+A-3=0\) (1)

+)\(A=0\Rightarrow x=\frac{3}{4}\)

+) A khác 0 thì (1) là pt bậc 2.

\(\Delta'=\left(2\right)^2-A\left(A-3\right)\ge0\Leftrightarrow4-A^2+3A\ge0\Leftrightarrow-1\le A\le4\)

Vậy...

19 tháng 7 2019

Bài 1: (bài nào nghĩ ra thì em làm trước)

C = \(\frac{2x^2-6x+5}{\left(x-1\right)^2}\). Đặt x - 1 = y >0 thì x = y + 1 >1

Khi đó \(C=\frac{2\left(y+1\right)^2-6\left(y+1\right)+5}{y^2}=\frac{2y^2-2y+1}{y^2}\)

\(=\frac{1}{y^2}-\frac{2}{y}+2\). đặt \(\frac{1}{y}=t>0\). \(C=t^2-2t+2=\left(t-1\right)^2+1\ge1\)

Đẳng thức xảy ra khi t = 1 suy ra y = 1 suy ra x = 2

Vậy Min C = 1 khi x = 2

9 tháng 8 2016

\(-----------\)

Đặt  \(\alpha=\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4x}\)và  \(t=\sqrt{x}\)  \(\Rightarrow\) \(\hept{\begin{cases}\alpha>0\\t>0\end{cases}\left(i\right)}\) với mọi  \(x>0\)

Khi đó, ta biểu diễn lại  \(\alpha\)  dưới dạng biến số  \(t\)  như sau:

\(\alpha=\frac{4t^4+9t^2+18t+9}{4t^3+4t^2}=\frac{3\left(4t^3+4t^2\right)+\left(4t^4-12t^3-3t^2+18t+9\right)}{4t^3+4t^2}\)  

nên  \(\alpha=3+\frac{\left(2t^2-3t-3\right)^2}{4t^3+4t^2}\ge0\)  với mọi  \(t>0\)  \(\Rightarrow\)  \(\hept{\begin{cases}4t^3+4t^2>0\\2t^2-3t-3\ge0\end{cases}}\)  (do  \(\Delta_t>0\)  )

Dấu  \("="\)  xảy ra khi và chỉ khi \(2t^2-3t-3=0\) 

Ta thành lập biệt thức  \(D=b^2-4ca\)  với tập xác định của pt là  \(t\in\left(0;\infty\right)\)  như sau:

\(\Delta_t=3^2+4.2.3=33\)

Do đó, ta tính được  \(t_1=\frac{3-\sqrt{33}}{4};\)  \(t_2=\frac{3+\sqrt{33}}{4}\)

Nhưng ta chỉ chấp nhận  

  \(t=\frac{3+\sqrt{33}}{4}\)  (do điều kiện  \(\left(i\right)\) )  làm nghiệm duy nhất của pt.

\(\Rightarrow\)  \(x=\left(\frac{3+\sqrt{33}}{4}\right)^2=\frac{21+3\sqrt{33}}{8}\)

\(-----------\)

Mặt khác,  ta lại áp dụng bđt  \(AM-GM\) loại hai cho bộ số với hai số thực không âm gồm  \(\left(\frac{\alpha}{9};\frac{1}{\alpha}\right)\) , ta có:

\(A=\alpha+\frac{1}{\alpha}=\left(\frac{\alpha}{9}+\frac{1}{\alpha}\right)+\frac{8\alpha}{9}\ge2\left(\frac{\alpha}{9}.\frac{1}{\alpha}\right)^{\frac{1}{2}}+\frac{8.3}{9}=\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)

Dấu  \("="\)  xảy ra khi và chỉ khi \(\hept{\begin{cases}\alpha=3\\\frac{\alpha}{9}=\frac{1}{\alpha}\end{cases}\Leftrightarrow}\)  \(\alpha=3\)  \(\Leftrightarrow\)  \(x=\frac{21+3\sqrt{33}}{8}\)

Vậy,  \(A_{min}=\frac{10}{3}\)  \(\Leftrightarrow\)  \(x=\frac{21+3\sqrt{33}}{8}\)

9 tháng 8 2016

Điều kiện x>0

Đặt a = 4x+ 9x + 18 √x +9

b = 4x√x + 4x

Từ đó ta có A = a/b + b/a >= 2

Vậy giá trị nhỏ nhất là A = 2 khi a/b = b/a

Phần còn lại bạn tự làm nha

16 tháng 9 2020

Ta có \(B=\frac{x^2-4x+5}{2}=\frac{x^2-4x+4}{2}+\frac{1}{2}=\left(x-2\right)^2.\frac{1}{2}+\frac{1}{2}\ge\frac{1}{2}\)

Dấu "=" xảy ra <=> x - 2 = 0

=> x = 2

Vậy Min B = 1/2 <=> x = 2

16 tháng 9 2020

\(B=\frac{x^2-4x+5}{2}=\frac{x^2-4x+4+1}{2}=\frac{\left(x-2\right)^2}{2}+\frac{1}{2}\)

Vì \(\left(x-2\right)^2\ge0\forall x\)\(\Rightarrow\frac{\left(x-2\right)^2}{2}\ge0\forall x\)

\(\Rightarrow\frac{\left(x-2\right)^2}{2}+\frac{1}{2}\ge\frac{1}{2}\forall x\)

Dấu " = " xảy ra \(\Leftrightarrow x-2=0\)\(\Leftrightarrow x=2\)

Vậy \(minB=\frac{1}{2}\)\(\Leftrightarrow x=2\)