\(A=2011\sqrt{x}+2012\sqrt{1-x}\)​ với\(0\le x\le1\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 3 2019

\(A\ge\sqrt{\left(1+1\right)\left(1-x+x+1\right)}+2\sqrt{x}\ge2+2\sqrt{x}\ge2\)

\(\Rightarrow A_{min}=2\) khi \(\left\{{}\begin{matrix}1-x=x+1\\2\sqrt{x}=0\end{matrix}\right.\) \(\Rightarrow x=0\)

22 tháng 2 2017

\(A^2=\left(2\sqrt{x-4}+\sqrt{8-x}\right)^2\le\left(2^2+1^2\right)\left(x-4+8-x\right)=20..\)

\(A\le2\sqrt{5}..\)

22 tháng 2 2017

Bài a, c tìm GTLN thì làm được rồi, chỉ không biết tìm GTNN bằng BĐT như thế nào?
 

16 tháng 7 2016

Đặt \(a=\sqrt{1-x},a\ge0\)  ; \(b=\sqrt{1+x},b\ge0\)

\(\Rightarrow y=\frac{5-3x}{\sqrt{1-x^2}}=\frac{\left(1+x\right)+4\left(1-x\right)}{\sqrt{1+x}.\sqrt{1-x}}=\frac{b^2+4a^2}{ab}\)

Áp dụng bất đẳng thức Cauchy , ta có : \(\frac{b^2+4a^2}{ab}\ge\frac{2.\sqrt{b^2.4a^2}}{ab}=\frac{4ab}{ab}=4\)

Dấu đẳng thức xảy ra \(\Leftrightarrow b^2=4a^2\Leftrightarrow b=2a\Leftrightarrow\sqrt{1+x}=2\sqrt{1-x}\Leftrightarrow x=\frac{3}{5}\)

Vậy Min y = 4 \(\Leftrightarrow x=\frac{3}{5}\)

30 tháng 8 2016

\(y^2=2+2\sqrt{1-x^2}\)

Do \(\sqrt{1-x^2}\ge0\)

Nên \(y^2\ge2\)

Dấu "=" xảy ra khi :x=1 hoặc x=-1

NV
24 tháng 11 2019

\(A^2=\left(\sqrt{13}.\sqrt{13x^2-13x^4}+3\sqrt{3}.\sqrt{3x^2+3x^4}\right)^2\)

\(\Rightarrow A^2\le\left(13+27\right)\left(16x^2-10x^4\right)=40\left[\frac{32}{5}-10\left(x^2-\frac{4}{5}\right)^2\right]\le256\)

\(\Rightarrow A\le16\Rightarrow A_{max}=16\) khi \(x^2=\frac{4}{5}\)