K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2018

đề bài ???

25 tháng 12 2018

Thế này à bạn: \(x^{2+x+1}\)

16 tháng 9 2019

Ta có : \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy \(\left(f\right)x\) đạt giá trị nhỏ nhất khi \(\left(x+\frac{1}{2}\right)^2=0\) . Tức là \(x=-\frac{1}{2}\)

Chúc bạn học tốt !!!

16 tháng 9 2019

\(x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra tại x=-1/2

29 tháng 9 2019

Đặt \(A=\frac{x^2}{x-1}\left(x>1\right)\)

\(A=\frac{x^2-1+1}{x-1}\)

\(A=\frac{\left(x-1\right)\left(x+1\right)}{x-1}+\frac{1}{x-1}\)

\(A=x+1+\frac{1}{x-1}\)

\(A=x-1+\frac{1}{x-1}+2\)

Áp dụng BĐT Cauchy cho các số dương ta có :

\(x-1+\frac{1}{x-1}+2\ge2\sqrt{\left(x-1\right).\frac{1}{\left(x-1\right)}}+2\)

\(\Leftrightarrow x-1+\frac{1}{x-1}+2\ge2+2=4\)

\(\Leftrightarrow A_{min}=4\)

Đẳng thức xảy ra khi và chỉ khi : \(x-1=\frac{1}{x-1}\Leftrightarrow x=2\)

Chúc bạn học tốt !!!

29 tháng 9 2019

Đặt A=\frac{x^2}{x-1}\left(x>1\right)A=x−1x2​(x>1)

A=\frac{x^2-1+1}{x-1}A=x−1x2−1+1​

A=\frac{\left(x-1\right)\left(x+1\right)}{x-1}+\frac{1}{x-1}A=x−1(x−1)(x+1)​+x−11​

A=x+1+\frac{1}{x-1}A=x+1+x−11​

A=x-1+\frac{1}{x-1}+2A=x−1+x−11​+2

Áp dụng BĐT Cauchy cho các số dương ta có :

x-1+\frac{1}{x-1}+2\ge2\sqrt{\left(x-1\right).\frac{1}{\left(x-1\right)}}+2x−1+x−11​+2≥2(x−1).(x−1)1​​+2

\Leftrightarrow x-1+\frac{1}{x-1}+2\ge2+2=4⇔x−1+x−11​+2≥2+2=4

\Leftrightarrow A_{min}=4⇔Amin​=4

Đẳng thức xảy ra khi và chỉ khi : x-1=\frac{1}{x-1}\Leftrightarrow x=2x−1=x−11​⇔x=2

24 tháng 9 2019

Ta có :
\(\sqrt{6-x^2}\le\sqrt{6}\)

\(\Rightarrow-2\sqrt{6-x^2}\ge-2\sqrt{6}\)

\(\Rightarrow5-2\sqrt{6-x^2}\ge5-2\sqrt{6}\)

\(\Rightarrow A=\frac{1}{5-2\sqrt{6-x^2}}\le\frac{1}{5-2\sqrt{6}}=5+2\sqrt{6}\)

\(Max_A=5+2\sqrt{6}\Leftrightarrow x=0\)

Chúc bạn học tốt !!!

11 tháng 6 2019

Bài 1 undefined

11 tháng 6 2019

Bài 1 :

undefined

25 tháng 9 2020

             Bài làm :

\(1\text{)}x^2-20x+2020=\left(x^2-20x+100\right)+1920=\left(x-10\right)^2+1920\)

Vì (x-10)2 ≥ 0 với mọi x

\(\Rightarrow\left(x-10\right)^2+1920\ge1920\forall x\)

Dấu "=" xảy ra khi

(x-10)2 = 0

<=> x-10=0

<=> x=10

Vậy GTNN của biểu thức là : 1920 <=> x=10

\(\text{2)}-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left(x-2\right)^2-1\)

Vì -(x-2)2 ≤ 0 với mọi x

\(\Rightarrow-\left(x-2\right)^2-1\le-1\forall x\)

Dấu "=" xảu ra khi :

x-2=0

<=> x=2

Vậy GTLN của biểu thức là -1 <=> x=2

25 tháng 9 2020

x2 - 20x + 2020 = ( x2 - 20x + 100 ) + 1920 = ( x - 10 )2 + 1920 ≥ 1920 ∀ x

Dấu "=" xảy ra <=> x = 10 

Vậy GTNN của biểu thức = 1920 <=> x = 10

-x2 + 4x - 5 = -( x2 - 4x + 4 ) - 1 = -( x - 2 )2 - 1 ≤ -1 ∀ x

Dấu "=" xảy ra <=> x = 2

Vậy GTLN của biểu thức = -1 <=> x = 2

10 tháng 9 2020

\(A=x^2-6x+10=\left(x-3\right)^2+1\ge1\)

\(\Rightarrow A_{min}=1\Leftrightarrow x=3\)

\(B=4x^2-4x+25=\left(2x-1\right)^2+24\ge24\)

\(\Rightarrow B_{min}=24\Leftrightarrow x=\frac{1}{2}\)

\(C=3x^2+9x+12=3\left(x+\frac{3}{2}\right)^2+\frac{21}{4}\ge\frac{21}{4}\)

\(\Rightarrow C_{min}=\frac{21}{4}\Leftrightarrow x=\frac{-3}{2}\)

24 tháng 11 2019

\(A=x^2+4x+100\)

\(A=x\left(x+4\right)+100\ge100\)

Dấu " = " xảy ra 

\(\Leftrightarrow x\left(x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)

Vậy Min A = 100 \(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)

24 tháng 11 2019

\(B=-2x^2+6x-4\)

\(B=2x\left(3-x\right)-4\le-4\)

Dấu " = " xảy ra 

\(\Leftrightarrow2x\left(3-x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

Vậy Max B = -4 \(\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)