Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x^2-2mx+m-7=0\)
Ta có: \(\Delta'=m^2-m+7>0\)
\(\Rightarrow\)Phương trình luôn có 2 nghiệm phân biệt
Theo vi - et thì (sao không tin ổng, ổng đáng tin cậy lắm đấy :D)
\(\hept{\begin{cases}x_1+x_2=2m\\x_1^2.x_2^2=m-7\end{cases}}\)
Theo đề bài ta có:
\(P=|x_1-x_2|\)
\(\Leftrightarrow P^2=x_1^2-2x_1x_2+x_2^2=\left(x_1+x_2\right)^2-4x_1x_2\)
\(=\left(2m\right)^2-4\left(m-7\right)=4m^2-4m+28=\left(2m-1\right)^2+27\ge27\)
\(\Rightarrow P\ge3\sqrt{3}\)
Dấu = xảy ra khi \(m=\frac{1}{2}\)
x2 - 2mx + m - 7 = 0
(a= 1; b=-2m; c=m-7)
<=> \(\Delta\)= b2-4ac
\(\Leftrightarrow\)\(\Delta\)= (-2m)2 -4\(\times\)1\(\times\)(m-7)
\(\Leftrightarrow\)\(\Delta\)= 4m2-4m+28
= 4m2-4m+28 >= 0
vậy pt có 2 ng với mọi m
Theo đl vi-et, t/c:
s=x1+x2=\(\frac{-b}{a}\)=-2m
p=x1\(\times\)x2=\(\frac{c}{a}\)= m + 7
x1 + x2 + x1 \(\times\)x2
= S + P
= -2m + m+7
= -m +7
min A = 0 khi
-m+7=0
\(\Rightarrow\)m=7
Xét \(\Delta=\left(m^2+m+1\right)^2+4\left(m^2-m+1\right)>0\)
=> PT luôn có 2 nghiệm phân biệt với mọi m
Theo hệ thức Vi-et ta có \(\hept{\begin{cases}x_1+x_2=\frac{m^2+m+1}{m^2-m+1}\\x_1x_2=\frac{-1}{m^2-m+1}\end{cases}}\)
a, \(P=\frac{-1}{m^2-m+1}=\frac{-1}{\left(m-\frac{1}{2}\right)^2+\frac{3}{4}}\ge\frac{-1}{\frac{3}{4}}=\frac{-4}{3}\)
Dấu "=" xảy ra khi \(m=\frac{1}{2}\)
b,Tìm GTNN : lấy S trừ 2
câu 1
x^2 -5x +y^2+xy -4y +2014
=(y^2+xy +1/4x^2) -4(y+1/2x)+4 +3/4x^2-3x+2010
=(y+1/2x-2)^2 +3/4(x^2-4x+4)+2007
=(y+1/2x-2)^2 +3/4(x-2)^2 +2007
GTNN là 2007<=> x=2 và y=1
\(M=x^2+y^2-xy-x-y+1\)
\(\Rightarrow2M=2x^2+2y^2-2xy-2x-2y+2\)
\(\Rightarrow2M=\left(x^2-2xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)\)
\(\Rightarrow2M=\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2>0\)
\(\Rightarrow M>0\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x-y=0\\x-1=0\\y-1=0\end{cases}}\Rightarrow x=y=1\)
TXĐ: x>= 3
M = (x-3) - 2.1/2\(\sqrt{x-3}\)+ 1/4 - 1/4 +3 = (\(\sqrt{x-3}\)-1/2)^2 +11/4 >= 11/4 với mọi x thuộc TXĐ
GTNN M = 11/4