K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2015

P=x2-2x+5

=x2-2x+1+4

=(x+1)2+4

vì (x+1)2 \(\ge\)0 => (x+1)2+4 \(\ge\)4

=> GTNN của P là 4

<=> x+1=0

<=> x=-1

28 tháng 3 2018

giải câu b trc nha

= ((x-1)^2+2009]/x^2=(x-1)^2/x^2+2009

vậy min=2009 khi x=1

28 tháng 3 2018

https://olm.vn//hoi-dap/question/57101.html     

Tham khảo đây nhá bạn

10 tháng 9 2017

Ta có : P = x2 - 2x + 5 = x2 - 2x + 1 + 4 = (x - 1)2 + 4

Vì \(\left(x-1\right)^2\ge0\forall x\)

Suy ra : \(P=\left(x-1\right)^2+4\ge4\forall x\)

Nên : Pmin = 4 khi x = 1

b) Ta có Q = 2x2 - 6x = 2(x- 3x) = 2(x2 - 3x + \(\frac{9}{4}-\frac{9}{4}\) ) = \(2\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{2}=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\)

Vì \(2\left(x-\frac{3}{2}\right)^2\ge0\forall x\) 

SUy ra ; \(Q=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)

Vậy \(Q_{min}=-\frac{9}{2}\) khi \(x=\frac{3}{2}\)

15 tháng 8 2016

a)P=x2-2x+5

         Ta có:x2-2x+5=x2-2x+1+4

                               =(x-1)2+4

     Vì (x-1)2\(\ge\)0

                    Suy ra:(x-1)2+4\(\ge\)4

Dấu = xảy ra khi x-1=0

                            x=1

           Vậy MinP=4 khi x=1

b)M=2x2-6x

            Ta có:2x2-6x=2.(x2-3x)

                                 =2.(x2-2.1,5x+2,25)-4,5

                                 =2.(x-1,5)2-4,5

           Vì 2.(x-1,5)2\(\ge\)0

Suy ra:2.(x-1,5)2-4,5\(\ge\)-4,5

                   Dấu = xảy ra khi x-1,5=0

                                               x=1,5

      Vậy Min M=-4,5 khi x=1,5

15 tháng 8 2016

a)

\(x^2-2x+5\)

\(=\left(x^2-2.x.1+1^2\right)+4\)

\(=\left(x-1\right)^2+4\)

Ta có

\(\left(x-1\right)^2+4\ge4\) ( với mọi x)

Dấu " = " xảy ra khi x=1

Vậy biểu thức đạt giá trị nhỏ nhất là 4 khi x=1

b)

\(2x^2-6x\)

\(=\left[\left(\sqrt{2}.x\right)^2-2.\sqrt{2}.x.\frac{3\sqrt{2}}{2}+\frac{9}{2}\right]-\frac{9}{2}\)

\(=\left(\sqrt{2}x-\frac{3\sqrt{2}}{2}\right)^2-\frac{9}{2}\)

Ta có

\(\left(\sqrt{2}x-\frac{3\sqrt{2}}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\) với mọi x

Dấu " = " xảy ra khi \(x=\frac{3}{2}\)

Vậy biểu thức đạt giá trị nhỏ nhất là \(-\frac{9}{2}\Leftrightarrow x=\frac{3}{2}\)

 

22 tháng 9 2021

Bài 5:

a) \(A=x^2-4x+9=\left(x^2-4x+4\right)+5=\left(x-2\right)^2+5\ge5\)

\(minA=5\Leftrightarrow x=2\)

b) \(B=x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(minB=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}\)

c) \(C=2x^2-6x=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)

\(minC=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\)

Bài 4:

a) \(M=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

\(maxM=7\Leftrightarrow x=2\)

b) \(N=x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

\(maxN=\dfrac{1}{4}\Leftrightarrow x=\dfrac{1}{2}\)

c) \(P=2x-2x^2-5=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\)

\(maxP=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{1}{2}\)

 

11 tháng 12 2020

Ta có: M=x22x+5

=(x2+2x5)

=(x2+2x+1)+6

=(x+1)2+6

Vì (x+1)20x

(x+1)2+66x

Dấu "=" xảy ra 

x=1⇔x=−1

Vậy MAXM=6x=1

11 tháng 12 2020

Đặt A=4xx2+3

=x2+4x+3=(x24x3)

=(x24x+47)

=[(x2)27]

=(x2)2+7

Ta có: (x2)20(x2)2+77

Dấu " = " khi (x2)2=0x=2

Vậy MAXA=7 khi x = 2

16 tháng 2 2018

a) P = x2 - 2x + 5

        = x2 - 2x + 1 - 1 + 5 

        = ( x - 1 )2 + 4

Ta có :  \(\left(x-1\right)^2\ge\)\(0\)\(\forall\)\(x\)

\(\Rightarrow\left(x-1\right)^2+4\)\(\ge\)\(0\)\(\forall\)\(x\)

Dấu " = " xảy ra <=> ( x - 1 )2 = 0

                          <=> x - 1 = 0

                           <=> x   =  1 

Vậy GTNN của P là 4 khi x = 1 .

b) M = 2x2 - 6x 

        = 2 ( x2 - 3x )

        = \(2\left[\left(x^2-2x\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)\right]\)

        =  \(2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\)

Ta có : \(2\left(x-\frac{3}{2}\right)^2\)\(\ge\)\(0\)\(\forall\)\(x\)

       \(\Rightarrow\)\(2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)\(\forall\)\(x\)

Dấu " = " xảy ra \(\Leftrightarrow\)\(\left(x-\frac{3}{2}\right)^2=0\)

                          \(\Leftrightarrow\) \(\left(x-\frac{3}{2}\right)=0\)

                          \(\Leftrightarrow\)\(x=\frac{3}{2}\)

Vậy GTNN của M là \(-\frac{9}{2}\)khi \(x=\frac{3}{2}\).