Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-1\right)^2-5\ge-5=>min=-5<=>\left(x-1\right)^2=0=>x-1=0=>x=1\)
vay GTNN la -5 tai x=1
\(\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\)
\(=\left|x-2014\right|+\left|2016-x\right|+\left|2015-x\right|\)
\(\ge\left|x-2014+2016-x\right|+\left|2015-x\right|\)
\(=2+\left|2015-x\right|\ge2\)
Dấu bằng xảy ra khi: \(\hept{\begin{cases}\left(x-2014\right)\left(2016-x\right)\ge0\\2015-x=0\end{cases}}\Rightarrow x=2015\)
Ta có: \(\left|2014-x\right|+\left|2016-x\right|=\left|x-2014\right|+\left|2016-x\right|\ge\left|x-2014+2016-x\right|=2\)
Dấu "=" xảy ra <=> \(\left(2014-x\right)\left(2016-x\right)\ge0\)
<=> \(2014\le x\le2016\) (1)
Mặt khác \(\left|2015-x\right|\ge0\). Dấu "=" xảy ra <=> 2015-x = 0 <=> x = 2015 (2)
Ta thấy điều kiện (2) và (1) thỏa nhau
Nên kết hợp cả hai ta suy ra: GTNN của |2014-x|+|2015-x|+|2016-x| bằng 2 khi x = 2015
Ta có \(\left|2014-x\right|\ge0\)với mọi giá trị của x
\(\left|2015-x\right|\ge0\)với mọi giá trị của x
\(\left|2016-x\right|\ge0\)với mọi giá trị của x
=> \(\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\ge0\)với mọi giá trị x
=> GTNN của A là 0.
Có I 2014 - x I + I 2016 - x I = I x - 2014 I + I 2016 - x I \(\ge\)I x - 2014 + 2016 - x I = 2
Dấu = xảy ra \(\Leftrightarrow\)(x - 2014)(2016 - x)\(\ge\)0
TH1: x- 2014\(\ge\)0 và 2016 - x\(\ge\)0
=> x\(\ge\) 2014 và x\(\le\)2016 ( chọn )
TH2: Làm tương tự => loại
Có I 2015 -x I \(\ge\)0
Dấu = xảy ra khi x = 2015
Vậy A min = 2 khi x = 2015
để A có GTNN
thì 2014 - | x-2015 | lớn nhất
mà | x-2015 | >= 0
=> 2014-| x-2015 | lớn nhất khi | x-2015 | = 0
=> x=2015 <=> A = 1008/1007
\(P=\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)
\(=\left(\left|x-2015\right|+\left|x-2017\right|\right)+\left|x-2016\right|\)
\(=\left(\left|x-2015\right|+\left|2017-x\right|\right)+\left|x-2016\right|\)
\(=\left|x-2015+2017-x\right|+\left|x-2016\right|\)
\(=2+ \left|x-2016\right|\)
Vì \(\left|x-2016\right|\ge0\left(\forall x\in Z\right)\Rightarrow2+\left|x-2016\right|\ge2\)
Dấu "=" xảy ra khi (x-2015).(2017-x) >= 0 và x - 2016 = 0
<=> x = 2016
Vậy Pmin = 2 khi x = 2016
mk ko viết lại đề
P= |x-2015|+|x-2016|+|2017-x|
\(\ge\)\(\left|x-2105+2017-x\right|+\left|x-2016\right|\)
=\(\left|2\right|+\left|x-2016\right|=2+\left|x-2016\right|\)
Do |x-2016|\(\ge0\)=> \(2+\left|x-2016\right|\ge2\)
dấu "=" xảy ra khi (x-2015).(2017-x)\(\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x\ge2015\\x\le2017\end{cases}\Rightarrow2015\le x\le2017}\)
Vậy GTNN của P=2 \(\Leftrightarrow2015\le x\le2017\)
\(A=\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\)
\(\Leftrightarrow A=\left|x-2014\right|+\left|2016-x\right|+\left|x-2015\right|\)
\(\Leftrightarrow A\ge\left|x-2014+2016-x\right|+\left|x-2015\right|\)
\(\Leftrightarrow A=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)x = 2015
Vậy GTNN của A = 2 tại x = 2015
\(A=\left|x-2014\right|+\left|2015-x\right|+\left|2016-x\right|\)
\(\ge x-2014+0+2016-x=2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-2014\ge0\\2015-x=0\\2016-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2014\\x=2015\\x\le2016\end{cases}}\Leftrightarrow x=2015\) (thỏa mãn đồng thời cả ba trường hợp)
\(x^{2016}-x^{2014}=0\)
\(\Rightarrow x^{2014}.\left(x^2-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2=1\\x^{2014}=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\pm1\\x=0\end{cases}}}\)
Vậy nghiệm của đa thức là 1,-1,0