K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2019

\(x^4-2x^3+3x^2-4x+2015=\left(x^2-x\right)^2+2\left(x-1\right)^2+2013\)

Mà \(\left(x^2-x\right)^2\ge0\forall x\)\(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow Min=2013\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

19 tháng 2 2019

Cách này cũng khá giống của bạn Nguyễn Văn Hạ nhưng mình nghĩ dễ bến đối hơn chỗ \(x^4-2x^3+x^2\rightarrow x^2\left(x-1\right)^2\)

\(A=\left(x^4-2x^3+x^2\right)+\left(2x^2-4x+2015\right)\)

\(=x^2\left(x-1\right)^2+2\left(x-1\right)^2+2013\ge2013\)

Dấu "=" xảy ra khi x - 1 = 0 tức là x = 1

Vậy \(A_{min}=2013\Leftrightarrow x=1\)

30 tháng 6 2017

Ta có : \(\frac{x^2-3x+3}{x^2-2x+1}=\frac{\left(x^2-2x+1\right)-x+1+1}{\left(x-1\right)^2}\)\(=\frac{\left(x-1\right)^2-\left(x-1\right)+1}{\left(x-1\right)^2}=\frac{1}{\left(x-1\right)^2}-\frac{1}{x-1}+1\)

\(=\frac{1}{\left(x-1\right)^2}-2.\frac{1}{x-1}.\frac{1}{2}+\frac{1}{4}-\frac{3}{4}\)

\(=\left(\frac{1}{x-1}-\frac{1}{2}\right)^2+\frac{3}{4}\)

Mà : \(\left(\frac{1}{x-1}-\frac{1}{2}\right)^2\ge0\forall x\)

Nên : \(\left(\frac{1}{x-1}-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Vậy GTNN của biểu thức là : \(\frac{3}{4}\) khi và chỉ khi x = 3

14 tháng 3 2019

\(A=\frac{3x^2-2x+3}{x^2+1}\Leftrightarrow A\left(x^2+1\right)=3x^2-2x+3\)

\(\Leftrightarrow Ax^2+A-3x^2+2x-3=0\)

\(\Leftrightarrow x^2\left(A-3\right)+2x+\left(A-3\right)=0\)

\(\Delta'=1-\left(A-3\right)^2\ge0\Leftrightarrow\left(1+A-3\right)\left(1-A+3\right)\ge0\)

\(\Leftrightarrow\left(4-A\right)\left(A-2\right)\ge0\Leftrightarrow2\le A\le4\)

20 tháng 2 2018

a) Từ giả thiết : \(a^2+2c^2=3b^2+19\Rightarrow a^2+2c^2-3b^2=19\)

Ta có : \(\frac{a^2+7}{4}=\frac{b^2+6}{5}=\frac{c^2+3}{6}=\frac{3b^2+18}{15}=\frac{2c^2+6}{12}\)\(=\frac{a^2+7+2c^2+6-3b^2-18}{4+12-15}=\frac{14}{1}=14\)

\(\Rightarrow\)\(a^2=49\Rightarrow a=7\)

\(\Rightarrow\)\(b^2=64\Rightarrow b=8\)

\(\Rightarrow\)\(c^2=81\Rightarrow c=9\)

b) \(P=x^4+2x^3+3x^2+2x+1\)

\(=\left(x^4+2x^2+1\right)+\left(2x^3+2x\right)+x^2=\left(x^2+1\right)^2+2x\left(x^2+1\right)+x^2\)

\(=\left(x^2+x+1\right)^2\)

Vì \(x^2+x+1=\left(x^2+2x\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Nên \(P\ge\left(\frac{3}{4}\right)^2=\frac{9}{16}\)

Dấu bằng xảy ra khi và chỉ khi \(x=-\frac{1}{2}\)

21 tháng 2 2018

Bố già giỏi qa

11 tháng 10 2020

\(H=2x^2-x+4==2\left(x^2-\frac{1}{2}x+2\right)\)

\(=2\left[x^2-2\cdot x\cdot\frac{1}{4}+\left(\frac{1}{4}\right)^2\right]+\frac{31}{8}\)

\(=2\left(x-\frac{1}{4}\right)^2+\frac{31}{8}\)

Vì \(\left(x-\frac{1}{4}\right)^2\ge0\forall x\)

=> \(2\left(x-\frac{1}{4}\right)^2+\frac{31}{8}\ge\frac{31}{8}\forall x\)

Dấu " = " xảy ra khi và chỉ khi \(\left(x-\frac{1}{4}\right)^2=0\Rightarrow x=\frac{1}{4}\)

Vậy \(H_{min}=\frac{31}{8}\)khi x = 1/4

2) \(I=\frac{1}{2}x^2+3x=\frac{1}{2}\left(x^2+6x\right)\)

\(=\frac{1}{2}\left(x^2+2\cdot x\cdot3+3^2\right)-\frac{9}{2}\)

\(=\frac{1}{2}\left(x+3\right)^2-\frac{9}{2}\)

Vì \(\left(x+3\right)^2\ge0\forall x\)

=> \(\frac{1}{2}\left(x+3\right)^2-\frac{9}{2}\ge-\frac{9}{2}\forall x\)

Dấu " = " xảy ra khi và chỉ khi (x + 3)2 = 0 => x = -3

Vậy \(I_{min}=-\frac{9}{2}\)khi x = -3

11 tháng 10 2020

1) \(H=2x^2-x+4=2\left(x^2-\frac{1}{2}x+\frac{1}{16}\right)+\frac{31}{8}=2\left(x-\frac{1}{4}\right)^2+\frac{31}{8}\ge\frac{31}{8}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(2\left(x-\frac{1}{4}\right)^2\ge0\Rightarrow x=\frac{1}{4}\)

Vậy Min(H) = 31/8 khi x = 1/4

2) \(I=\frac{1}{2}x^2+3x=\frac{1}{2}\left(x^2+6x+9\right)-\frac{9}{2}=\frac{1}{2}\left(x+3\right)^2-\frac{9}{2}\ge-\frac{9}{2}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\frac{1}{2}\left(x+3\right)^2=0\Rightarrow x=-3\)

Vậy Min(I) = -9/2 khi x = -3

30 tháng 11 2018

\(N=\frac{3x^2-4x}{x^2+1}=\frac{4x^2-4x+1-\left(x^2+1\right)}{x^2+1}=\frac{\left(2x-1\right)^2}{x^2+1}-1\ge-1\forall x\)

Dấu "=" xảy ra khi \(2x-1=0\Rightarrow x=\frac{1}{2}\)

Vậy \(MinN=-1\Leftrightarrow x=\frac{1}{2}\)

\(P=\frac{2x+1}{x^2+2}=\frac{4x+2}{2x^2+4}=\frac{x^2+4x+4-\left(x^2+2\right)}{2x^2+4}=\frac{\left(x+2\right)^2}{2x^2+4}-\frac{1}{2}\ge-\frac{1}{2}\forall x\)

Dấu "=" xảy ra khi: \(x+2=0\Rightarrow x=-2\)

Vậy \(MinP=-\frac{1}{2}\Leftrightarrow x=-2\)

21 tháng 5 2017

thi xong còn học chăm chỉ thế

22 tháng 5 2017

1)???

2) \(A=\dfrac{3x^2-8x+6}{x^2-2x+1}=2+\dfrac{x^2-4x+4}{x^2-2x+1}=2+\dfrac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge2\)

Vậy GTNN của A là 2 tại x=2.

3) \(\)Đặt \(a=\dfrac{1}{x+100}\Rightarrow x=\dfrac{1}{a}-100\)

\(D=\dfrac{x}{\left(x+100\right)^2}=a^2x=a^2\left(\dfrac{1}{a}-100\right)=a-100a^2=-100\left(a^2-\dfrac{a}{100}+\dfrac{1}{40000}-\dfrac{1}{40000}\right)=-100\left(a-\dfrac{1}{200}\right)^2+\dfrac{1}{400}\le\dfrac{1}{400}\)

Vậy GTLN của D là \(\dfrac{1}{400}\) tại \(a=\dfrac{1}{200}\Leftrightarrow x=100\)