K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2018

Ta có : \(A=\left(|x-3|+2\right).2+|y+3|+2018\)

                \(=2.|x-3|+4+|y-3|+2018\)

                \(=\left(2.|x-3|+|y+3|\right)+\left(4+2018\right)\)

                \(=\left(2.|x-3|+|y+3|\right)+2022\)

Vì \(|x-3|\ge0\)\(\forall x\)

     \(|y+3|\ge0\)\(\forall y\)

\(\Rightarrow2.|x-3|+|y+3|\ge0\)\(\forall x,y\)

\(\Rightarrow2.|x-3|+|y+3|+2022\ge2022\)\(\forall x,y\)

hay \(A\ge2022\)

\(\Rightarrow minA=2022\Leftrightarrow x-3=0\)và \(y+3=0\)

                                   \(\Leftrightarrow x=3\)và \(y=-3\)

Vậy \(minA=2022\Leftrightarrow x=3\)và \(y=-3\)

9 tháng 10 2018

Ta có: \(\left(\left|x-3\right|+2\right)^2\ge0\forall x\) không âm

\(\left|y+3\right|\ge3\forall y\) không âm

Cộng theo vế 2 BĐT trên ta có:

\(A=\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2018\ge0+3+2018=2021\)

Vậy \(A_{min}=2021\Leftrightarrow\hept{\begin{cases}\left(\left|x-3\right|+2\right)^2=0\\\left|y+3\right|=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=0\end{cases}}}\)

21 tháng 4 2021

1. B = | x - 2018 | + | x - 2019 | + | x - 2020 |

= ( | x - 2018 | + | x - 2020 | ) + | x - 2019 | 

= ( | x - 2018 | + | 2020 - x | ) + | x - 2019 |

Vì \(\hept{\begin{cases}\left|x-2018\right|+\left|2020-x\right|\ge\left|x-2018+2020-x\right|=2\\\left|x-2019\right|\ge0\end{cases}}\)=> B ≥ 2 ∀ x

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2018\right)\left(2020-x\right)\ge0\\x-2019=0\end{cases}}\Rightarrow x=2019\)

Vậy MinB = 2 <=> x = 2019

21 tháng 4 2021

2. ĐKXĐ : x ≥ 0

Ta có : \(\sqrt{x}+3\ge3\forall x\ge0\)

=> \(\frac{2019}{\sqrt{x}+3}\le673\forall x\ge0\). Dấu "=" xảy ra <=> x = 0 (tm)

Vậy MaxC = 673 <=> x = 0

\(\left|x-3\right|+2>=2\)

=>(|x-3|+2)^2>=4

\(A=\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2018>=4+2018=2022\)

Dấu = xảy ra khi x-3=0 và y+3=0

=>x=3 và y=-3

4 tháng 4 2020

Vì \(\left(x-2\right)^2\ge0\)\(\forall x\inℝ\)\(\left|y-x\right|\ge0\)\(\forall x\inℝ\)

\(\Rightarrow\left(x-2\right)^2+\left|y-x\right|\ge0\)\(\forall x,y\inℝ\)\(\Rightarrow\left(x-2\right)^2+\left|y-x\right|+3\ge3\)\(\forall x,y\inℝ\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-2=0\\y-x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\x=y\end{cases}}\Leftrightarrow x=y=2\)

Vậy GTNN A = 3 khi x = y = 2

7 tháng 10 2018

\(2018^0à?\)

\(A=3\left(x-4\right)^{2018}+\left|3y+5\right|+1\)

Do \(3\left(x-4\right)^{2018}\ge0;\left|3y+5\right|\ge0\forall x,y\)

Nên \(A=3\left(x-4\right)^{2018}+\left|3y+5\right|+1\ge1với\forall x,y\)

Dấu = xảy ra khi \(\hept{\begin{cases}x-4=0\\3y+5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=-\frac{5}{3}\end{cases}}}\)

26 tháng 12 2018

Bài 1 :

Vì \(\sqrt{3x+2y+z}\ge0\forall x;y;z\)

\(\left|y-\frac{1}{2}\right|\ge0\forall y\)

\(\left(z-2\right)^2\ge0\forall z\)

\(\Rightarrow A\ge2018\forall x;y;z\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3x+2y+z=0\\y-\frac{1}{2}=0\\z-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x+2\cdot\frac{1}{2}+2=0\\y=\frac{1}{2}\\z=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=\frac{1}{2}\\z=2\end{cases}}}\)

Vậy........

26 tháng 12 2018

Bài 2 :

Lý luận tương tự câu 1) ta có :

\(\hept{\begin{cases}x-1=0\\y+1=0\\x+y+z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\\1-1+z=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=-1\\z=0\end{cases}}}\)

Thay x; y; z vào P ta có :

\(P=1^{2018}+\left(-1\right)^{2019}+0^{2020}\)

\(P=1-1+0\)

\(P=0\)

15 tháng 10 2019

Vì x2 ≥ 0 => 2x2 ≥ 0 ; |y - 2| ≥ 0 => 3|y - 2| ≥ 0

=> (2x2 + 3|y - 2|) ≥ 0

=>  (2x2 + 3|y - 2|) - 2016 ≤ 2016

Dấu " = " xảy ra <=> 2x2 = 0 và 3|y - 2| = 0

                          <=> x2 = 0          |y - 2| = 0

                          <=> x = 0             y - 2 = 0

                          <=> x = 0             y = 2

Vậy GTLN C = 2016 khi x = 0; y = 2

b, Ta có: \(D=\frac{x^2+15}{x^2+3}=\frac{\left(x^2+3\right)+12}{x^2+3}=1+\frac{12}{x^2+3}\) 

Vì x2 ≥ 0 => x2 + 3 ≥ 3

=> \(\frac{12}{x^2+3}\le\frac{12}{3}=4\)

=> \(1+\frac{12}{x^2+3}\le1+4=5\)

Dấu " = " xảy ra <=> x2 = 0 <=> x = 0

Vậy GTNN của D = 5 khi x = 0

Đề ngược?? 

                            

15 tháng 10 2019

kết luận câu b sửa lại thành GTLN D = 5 khi x = 0