K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2018

A = (x^2-2xy+y^2)+(4y^2+y+1/16)+32079/16

   = (x-y)^2+(2y+1/4)^2+32079/16 >= 32079/16

Dấu "=" xảy ra <=> x-y=0 và 2y+1/4 = 0 <=> x=y=-1/8

Vậy GTNN của A = 32079/16 <=> x=y=-1/8

Tk mk nha 

7 tháng 1 2018

Ta xó A=\(\left(x^2-2xy+y^2\right)+4y^2+y+\frac{1}{16}+\frac{32079}{16}=\left(x-y\right)^2+\left(2y+\frac{1}{4}\right)^2+\frac{32079}{16}\ge\frac{32079}{16}\)

dấu = xảy ra <=>\(\hept{\begin{cases}x=y\\y=-\frac{1}{8}\end{cases}\Leftrightarrow x=y=-\frac{1}{8}}\)

^_^

21 tháng 6 2019

\(x^2+5y^2+2xy-2y+2005=x^2+y^2+4y^2+2xy-2y+\frac{1}{4}+\frac{8019}{4}\)

\(=\left(x^2+2xy+y^2\right)+\left(4y^2-2y+\frac{1}{4}\right)+\frac{8019}{4}\)

\(=\left(x+y\right)^2+\left(2y-\frac{1}{2}\right)^2+\frac{8019}{4}\)

Vì \(\left(x+y\right)^2\ge0\)

    \(\left(2y-\frac{1}{2}\right)^2\ge0\)

\(\Rightarrow\left(x+y\right)^2+\left(2y-\frac{1}{2}\right)^2+\frac{8019}{4}\ge\frac{8019}{4}\)

Vậy \(GTNN=\frac{8019}{4}\)tại \(x=-\frac{1}{4}\)và \(y=\frac{1}{4}\)

3 tháng 8 2017

\(A=x^2+2xy+y^2+16=\left(x+y\right)^2+16\ge16\forall x\)Vậy Min A = 16 khi \(x+y=0\Rightarrow x=-y\)

\(B=9x^2+6x+y^2+4x+16=\left(9x^2+6x+1\right)+\left(y^2+4x+4\right)+11\)

\(=\left(3x+1\right)^2+\left(y+2\right)^2+11\ge11\forall x\)

Vậy Min B = 11 khi \(\left\{{}\begin{matrix}3x+1=0\\y+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{3}\\y=-2\end{matrix}\right.\)

\(C=4x^2+4x+5y^2+5y=\left(4x^2+4x+1\right)+5\left(y^2+y+\dfrac{1}{4}\right)-\dfrac{9}{4}\)\(=\left(2x+1\right)^2+5\left(y+\dfrac{1}{2}\right)^2-\dfrac{9}{4}\)

Vậy Min C = \(\dfrac{9}{4}\) khi \(\left\{{}\begin{matrix}2x+1=0\\y+\dfrac{1}{2}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{1}{2}\end{matrix}\right.\)

2 tháng 7 2021

2) \(P=\frac{4}{2x^2+2xy+y^2+5x+20}=\frac{4}{\left(x^2+2xy+y^2\right)+\left(x^2+5x+\frac{25}{4}\right)+\frac{75}{4}}\)

\(=\frac{4}{\left(x+y\right)^2+\left(x+\frac{5}{2}\right)^2+\frac{75}{4}}\)

Để P đạt GTLN 

=> Mẫu thức đạt GTNN

mà \(\left(x+y\right)^2+\left(x+\frac{5}{2}\right)^2+\frac{75}{4}\ge\frac{75}{4}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y=0\\x+\frac{5}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{5}{2}\\y=\frac{5}{2}\end{cases}}\)

Thay x = -5/2 và y = 5/2 vào P 

Khi đó P = \(\frac{4}{\left(-\frac{5}{2}+\frac{5}{2}\right)^2+\left(-\frac{5}{2}+\frac{5}{2}\right)^2+\frac{75}{4}}=\frac{4}{\frac{75}{4}}=\frac{16}{75}\)

Vậy Max P = 16/75 <=> x = -5/2 ; y = 5/2

2 tháng 7 2021

1) Ta có P = x2 + 2xy + 3y2 + 5y + 10

= (x2 + 2xy + y2) + (2y2 + 5y + 10) 

\(\left(x+y\right)^2+2\left(y^2+\frac{5}{2}y+5\right)=\left(x+y\right)^2+2\left(y^2+\frac{5}{2}y+\frac{25}{16}+\frac{55}{16}\right)\)

\(\left(x+y\right)^2+2\left(y+\frac{5}{4}\right)^2+\frac{55}{8}\ge\frac{55}{8}\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+y=0\\y+\frac{5}{4}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{4}\\y=-\frac{5}{4}\end{cases}}\)

Vạy Min P = 55/8 <=> x = 5/4 ; y = -5/4 

14 tháng 6 2018

Đặt \(A=-2x^2-y^2-2xy+4x+2y+2\)

\(-A=2x^2+y^2+2xy-3x-2y-2\)

\(-A=\left(x^2+2xy+y^2\right)+x^2-4x-2y-2\)

\(-A=\left[\left(x+y\right)^2-2\left(x+y\right)+1\right]+\left(x^2-2x+1\right)-4\)

\(-A=\left(x+y-1\right)^2+\left(x-1\right)^2-4\)

Mà  \(\left(x+y-1\right)^2\ge0\forall x;y\)

       \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow-A\ge-4\)

\(\Leftrightarrow A\le4\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x+y-1=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=0\\x=1\end{cases}}\)

Vậy  \(A_{Max}=4\Leftrightarrow\left(x;y\right)=\left(1;0\right)\)

14 tháng 6 2018

Đặt  \(B=x^2-4xy+5y^2+10x-22y+27\)

\(B=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+27\)

\(B=\left[\left(x-2y\right)^2+2\left(x-2y\right)\times5+25\right]+\)\(\left(y^2-2y+1\right)+1\)

\(B=\left(x-2y+5\right)^2+\left(y-1\right)^2+1\)

Mà  \(\left(x-2y+5\right)^2\ge0\forall x;y\)

       \(\left(y-1\right)^2\ge0\forall y\)

\(\Rightarrow B\ge1\)

Dấu "=" xảy ra khi :

\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)

Vậy  \(B_{Min}=1\Leftrightarrow\left(x;y\right)=\left(-3;1\right)\)

30 tháng 7 2017

MÌNH XIN SỬA LẠI ĐỀ \(^{C=x^2-xy+y^2-x+y+1}\)

22 tháng 3 2020

Vào CHTT

1 tháng 12 2016

Ta có

x2 + 2y2 + 2xy + 7x + 7y + 10 = 0

<=> (x + y)2 + 2(x + y) + 1 + 5(x + y + 1) + y2 + 4 = 0

<=> (x + y + 1)2 + 5(x + y + 1) + y2 + 4 = 0

<=> A2 + 5A + y2 + 4 = 0

<=> y2 = - 4 - 5A - A2 \(\ge0\)

<=> \(-4\le A\le-1\)

Vậy GTLN là -1, GTBN là - 4

23 tháng 3 2019

a, ko bít làm

b,ko bít lun

23 tháng 3 2019

Bị sàm à