Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, P>0
Có \(P^2=x+2\sqrt{x\left(2-x\right)}+2-x=2+2\sqrt{2x-x^2}=\sqrt{1-\left(x^2-2x+1\right)}+2=2+\sqrt{1-\left(x-1\right)^2}\)
Luôn có: \(1-\left(x-1\right)^2\le1\)=> \(0\le\sqrt{1-\left(x-1\right)^2}\le1\)<=> \(0\le2\sqrt{1-\left(x-1\right)^2}\le4\)
<=> \(2\le2+2\sqrt{1-\left(x-1\right)^2}\le2+2\)
<=> \(2\le P^2\le4\)
<=> \(\sqrt{2}\le P\le2\)(do P>0)
minP xảy ra <=> \(\sqrt{1-\left(x-1\right)^2}=0\)
<=> \(\left(x-1\right)^2=1\) <=> \(\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)(t/m)
maxP xảy ra<=> \(\sqrt{1-\left(x-1\right)^2}=1\)
<=> \(\left(x-1\right)^2=0\) <=> x=1(t/m)
b, Q>0 (đk :\(2019\le x\le2020\))
Có \(Q^2=x-2019+2\sqrt{\left(x-2019\right)\left(2020-x\right)}+2020-x=1+2\sqrt{\left(x-2019\right)\left(2020-x\right)}\)
Luôn có: \(0\le2\sqrt{\left(x-2019\right)\left(2020-x\right)}\le\left(x-2019\right)+\left(2020-x\right)\)
<=> \(1\le1+2\sqrt{\left(x-2019\right)\left(2020-x\right)}\le1+1\)
<=> \(1\le Q^2\le2\)
<=> \(1\le Q\le\sqrt{2}\)( do Q>0)
minQ=1 <=> \(\sqrt{\left(x-2019\right)\left(2020-x\right)}=0\)
<=> \(\left(x-2019\right)\left(2020-x\right)=0\)
<=> x=2019(tm) hoặc x=2020(t/m)
maxQ=\(\sqrt{2}\) <=> \(x-2019=2020-x\) <=> \(x=\frac{4039}{2}\) (tm)
TXĐ: \(D=\left(-1;1\right)\)
\(B=\frac{2018x+2019\sqrt{1-x^2}+2020}{\sqrt{1-x^2}}\)
\(=\frac{2018x+2020}{\sqrt{1-x^2}}+2019\)
Đặt \(A=\frac{2018x+2020}{\sqrt{1-x^2}}>0\)vì \(-1< x< 1\)
=> \(\sqrt{1-x^2}.A=2018x+2020\)
=> \(\left(1-x^2\right)A^2=2018^2x^2+2.2018.2020x+2020^2\)
<=> \(\left(2018^2+A^2\right)x^2+2.2018.2020x+2020^2-A^2=0\)
pt trên có nghiệm <=> \(\Delta\ge0\)<=> \(\left(2018.2020\right)^2-\left(2018^2+A^2\right).\left(2020^2-A^2\right)\ge0\)
<=> \(A^4-\left(2020^2-2018^2\right)A^2\ge0\)
<=> \(A^2-8076\ge0\)
<=> \(A\ge\sqrt{8076}\)
"=" xảy ra <=> \(x=-\frac{1009}{1010}\left(tm\right)\)
Vậy GTNN của B = \(\sqrt{8076}+2019\) đạt tại \(x=-\frac{1009}{1010}\)
Lời giải:
Bổ sung ĐK $x,y\geq 0$ để các biểu thức có nghĩa.
a)
\(A=x+y-8\sqrt{x}-2\sqrt{y}-2019=(x-8\sqrt{x}+16)+(y-2\sqrt{y}+1)-2036\)
\(=(\sqrt{x}-4)^2+(\sqrt{y}-1)^2-2036\)
Ta thấy \((\sqrt{x}-4)^2\geq 0; (\sqrt{y}-1)^2\geq 0\) với mọi \(x,y\geq 0\)
Do đó: \(A=(\sqrt{x}-4)^2+(\sqrt{y}-1)^2-2036\geq -2036\)
Vậy GTNN của $A$ là $-2036$ khi \(\left\{\begin{matrix} \sqrt{x}-4=0\\ \sqrt{y}-1=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=16\\ y=1\end{matrix}\right.\)
b)
\(B=x+y+12\sqrt{x}-4\sqrt{y}+19=(x+12\sqrt{x})+(y-4\sqrt{y}+4)+15\)
\(=x+12\sqrt{x}+(\sqrt{y}-2)^2+15\)
Ta thấy: \(x+12\sqrt{x}\geq 0; (\sqrt{y}-2)^2\geq 0, \forall x,y\geq 0\)
\(\Rightarrow B\ge 0+0+15=15\)
Vậy GTNN của $B$ là $15$ khi \(\left\{\begin{matrix} x+12\sqrt{x}=0\\ \sqrt{y}-2=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=0\\ y=4\end{matrix}\right.\)
c)
\(C=2x+y-10\sqrt{x}-6\sqrt{y}+2\sqrt{xy}+8\)
\(=(x+y+2\sqrt{xy})+x-10\sqrt{x}-6\sqrt{y}+8\)
\(=(\sqrt{x}+\sqrt{y})^2-6(\sqrt{x}+\sqrt{y})+(x-4\sqrt{x})+8\)
\(=(\sqrt{x}+\sqrt{y})^2-6(\sqrt{x}+\sqrt{y})+9+(x-4\sqrt{x}+4)-5\)
\(=(\sqrt{x}+\sqrt{y}-3)^2+(\sqrt{x}-2)^2-5\)
\(\geq 0+0-5=-5\) với mọi $x,y\ge 0$
Vậy GTNN của $C$ là $-5$ đạt tại \(\left\{\begin{matrix} \sqrt{x}+\sqrt{y}-3=0\\ \sqrt{x}-2=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} y=1\\ x=4\end{matrix}\right.\)
d)
\(D=2y+x-2\sqrt{x}-2\sqrt{y}+2\sqrt{xy}+2\)
\(=(y+x+2\sqrt{xy})+y-2\sqrt{x}-2\sqrt{y}+2\)
\(=(\sqrt{x}+\sqrt{y})^2-2(\sqrt{x}+\sqrt{y})+1+y+1\)
\(=(\sqrt{x}+\sqrt{y}-1)^2+y+1\)
\(\geq 0+0+1=1\) với mọi $x,y\geq 0$
Vậy GTNN của $D$ là $1$ khi \(\left\{\begin{matrix} \sqrt{x}+\sqrt{y}-1=0\\ y=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} y=0\\ x=1\end{matrix}\right.\)
Lời giải:
Bổ sung ĐK $x,y\geq 0$ để các biểu thức có nghĩa.
a)
\(A=x+y-8\sqrt{x}-2\sqrt{y}-2019=(x-8\sqrt{x}+16)+(y-2\sqrt{y}+1)-2036\)
\(=(\sqrt{x}-4)^2+(\sqrt{y}-1)^2-2036\)
Ta thấy \((\sqrt{x}-4)^2\geq 0; (\sqrt{y}-1)^2\geq 0\) với mọi \(x,y\geq 0\)
Do đó: \(A=(\sqrt{x}-4)^2+(\sqrt{y}-1)^2-2036\geq -2036\)
Vậy GTNN của $A$ là $-2036$ khi \(\left\{\begin{matrix} \sqrt{x}-4=0\\ \sqrt{y}-1=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=16\\ y=1\end{matrix}\right.\)
b)
\(B=x+y+12\sqrt{x}-4\sqrt{y}+19=(x+12\sqrt{x})+(y-4\sqrt{y}+4)+15\)
\(=x+12\sqrt{x}+(\sqrt{y}-2)^2+15\)
Ta thấy: \(x+12\sqrt{x}\geq 0; (\sqrt{y}-2)^2\geq 0, \forall x,y\geq 0\)
\(\Rightarrow B\ge 0+0+15=15\)
Vậy GTNN của $B$ là $15$ khi \(\left\{\begin{matrix} x+12\sqrt{x}=0\\ \sqrt{y}-2=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=0\\ y=4\end{matrix}\right.\)
c)
\(C=2x+y-10\sqrt{x}-6\sqrt{y}+2\sqrt{xy}+8\)
\(=(x+y+2\sqrt{xy})+x-10\sqrt{x}-6\sqrt{y}+8\)
\(=(\sqrt{x}+\sqrt{y})^2-6(\sqrt{x}+\sqrt{y})+(x-4\sqrt{x})+8\)
\(=(\sqrt{x}+\sqrt{y})^2-6(\sqrt{x}+\sqrt{y})+9+(x-4\sqrt{x}+4)-5\)
\(=(\sqrt{x}+\sqrt{y}-3)^2+(\sqrt{x}-2)^2-5\)
\(\geq 0+0-5=-5\) với mọi $x,y\ge 0$
Vậy GTNN của $C$ là $-5$ đạt tại \(\left\{\begin{matrix} \sqrt{x}+\sqrt{y}-3=0\\ \sqrt{x}-2=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} y=1\\ x=4\end{matrix}\right.\)
d)
\(D=2y+x-2\sqrt{x}-2\sqrt{y}+2\sqrt{xy}+2\)
\(=(y+x+2\sqrt{xy})+y-2\sqrt{x}-2\sqrt{y}+2\)
\(=(\sqrt{x}+\sqrt{y})^2-2(\sqrt{x}+\sqrt{y})+1+y+1\)
\(=(\sqrt{x}+\sqrt{y}-1)^2+y+1\)
\(\geq 0+0+1=1\) với mọi $x,y\geq 0$
Vậy GTNN của $D$ là $1$ khi \(\left\{\begin{matrix} \sqrt{x}+\sqrt{y}-1=0\\ y=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} y=0\\ x=1\end{matrix}\right.\)
\(x=\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3+2\sqrt{2}}\)
Ta có: Đặt \(A=\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}\)=> \(A^2=\frac{\sqrt{5}+2+\sqrt{5}-2+2\sqrt{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}}{\sqrt{5}+1}\)
=> \(A^2=\frac{2\sqrt{5}+2\sqrt{5-4}}{\sqrt{5}+1}=\frac{2\left(\sqrt{5}+1\right)}{\sqrt{5}+1}=2\)=> \(A=\sqrt{2}\)
\(\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)
==> \(x=\sqrt{2}-\left(\sqrt{2}+1\right)=-1\)
Do đó: N = (-1)2019 + 3.(-1)2020 - 2.(-1)2021 = -1 + 3 + 2 = 4
C/m: \(\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)
\(\Rightarrow2x^2+xy+2y^2\ge\dfrac{5}{4}\left(x^2+2xy+y^2\right)\)
\(\Leftrightarrow8x^2+4xy+8y^2\ge5x^2+10xy+5y^2\)
\(\Leftrightarrow3\left(x-y\right)^2\ge0\left(LĐ\right)\)
Vậy \(\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)
CMTT: \(\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)\);
\(\sqrt{2z^2+zx+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)
Vậy H=\(\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+xz+2z^2}\ge\sqrt{5}\left(x+y+z\right)=2019\)Hmin=2019\(\Leftrightarrow x=y=z=\dfrac{\dfrac{2019}{\sqrt{5}}}{3}\)
\(M=\sqrt{x^2-4x+4}+2014\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}\)
\(M=\left|x-2\right|+2014\left|x-3\right|+\left|x-5\right|\)
\(M=\left|x-2\right|+\left|5-x\right|+2014\left|x-3\right|\)
\(M\ge\left|x-2+5-x\right|+2014\left|x-3\right|=3+2014\left|x-3\right|\ge3\)
\("="\Leftrightarrow x=3\)
Sửa đề: \(M=2019\sqrt{x-2}+2020\sqrt{10-y}\)
+Có: \(\sqrt{x-2}\ge với\forall x\\ \sqrt{10-y}\ge0với\forall x\\ \Rightarrow2019\sqrt{x-2}+2020\sqrt{10-y}\ge0\\ \Leftrightarrow M\ge0\)
+Dấu ''='' xảy ra khi
\(\sqrt{x-2}=0\\ \Leftrightarrow x=2\)
\(\sqrt{10-y}=0\\ \Leftrightarrow y=10\)
+Vậy \(M_{min}=0\) khi \(x=2,y=10\)
Đề không sai nha bạn