K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2017

(x2+2xy+y2)-2(x+y)+1+(x2-4x+4)+5

=(x+y-1)2+(x-2)2+5>=5

3 tháng 2 2017

Bạn ơi đề k sai đúng hông?

3 tháng 2 2017

\(2x^2+y^2+2xy-6x-2y+10\)

\(=\left(x^2-4x+4\right)+\left(x^2+y^2+1+2xy-2y-2x\right)+5\)

\(=\left(x-2\right)^2+\left(x+y-1\right)^2+5\ge5\)

18 tháng 12 2018

\(x^2+y^2-xy-2x-2y+9=x^2+y^2+2xy-2x-2y+9-3xy\)

\(=\left(x+y\right)^2-2\left(x+y\right)+9-3xy=\left(x+y-2\right)\left(x+y\right)+9-3xy.\)

\(đếnđâytịt\)

c, =3 dễ

\(\frac{3x^2-6x+9}{x^2-2x+3}=\frac{3\left(x^2-2x+3\right)}{x^2-2x+3}=3\)

18 tháng 12 2018

Câu b bạn không làm à? Làm hộ mình với! Còn câu a thì còn -3xy thì?

11 tháng 2 2017

Mình biết hơi muộn

\(A=x^2+2xy+6x+6y+2y^2+8\Leftrightarrow x^2+2xy+6x+6y+y^2+9-1\)

\(A=0\Rightarrow\left(x+y+3\right)^2+y^2-1=0\)

\(\Rightarrow-1\le x+y+3\le1\) .

\(\Rightarrow2012\le x+y+3+2013\le2014\)

\(\Rightarrow2012\le B\le2014\)

5 tháng 7 2016

bài này dài lăm mk làm giúp 1 câu

A = (x -y)+ (x+1)2 + (y-1)2 + 1

vậy GTNN = 1

(bn phân h 2x= x2 + x2

  2y2 = y2+ y và 3 =1+1+1

là hiểu cách mk làm , còn nếu k hiểu ra đưa thầy giáo ,thầy sẽ gọi mk là thiên tài)

6 tháng 7 2016

bạn đó giải rồi nhung nếu cần mình giải kỹ thì nhắn tin mình nha

7 tháng 11 2018

a) \(A=\left(x+1\right)\left(2x-1\right)\)

\(A=2x^2+x-1\)

\(A=2\left(x^2+\frac{1}{2}x-\frac{1}{2}\right)\)

\(A=2\left[x^2+2\cdot x\cdot\frac{1}{4}+\left(\frac{1}{4}\right)^2-\frac{9}{16}\right]\)

\(A=2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]\)

\(A=2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\ge\frac{-9}{8}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x+\frac{1}{4}=0\Leftrightarrow x=\frac{-1}{4}\)

Vậy Amin = -9/8 khi và chỉ khi x = -1/4

b) \(B=4x^2-4xy+2y^2+1\)

\(B=\left(2x\right)^2-2\cdot2x\cdot y+y^2+y^2+1\)

\(B=\left(2x-y\right)^2+y^2+1\ge1\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-y=0\\y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}\Rightarrow}}x=y=0\)

Vậy Bmin = 1 khi và chỉ khi x = y = 0

12 tháng 1 2017

\(A=2x^2+y^2+2xy-6x-2y+10\)

\(=\left(\left(x^2+2xy+y^2\right)-2\left(x+y\right)+1\right)+\left(x^2-4x+4\right)+5\)

\(=\left(x+y-1\right)^2+\left(x-2\right)^2+5\ge5\)

Vậy GTNN là A = 5 khi \(\hept{\begin{cases}x=2\\y=-1\end{cases}}\)

26 tháng 11 2018

Sửa lại đề : \(\frac{2x^2+3xy+y^2}{2x^3+x^2y-2xy^2-y^3}\)

Ta có : \(\frac{2x^2+3xy+y^2}{2x^3+x^2y-2xy^2-y^3}\)   \(=\) \(\frac{2x^2+3xy+y^2}{\left(x-y\right)\left(2x^2+3xy+y^2\right)}\)

                                                          \(=\frac{1}{x-y}\)      ( Chia cả tử và mẫu cho \(2x^2+3xy+y^2\))