Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-6x^2=\left(x^2+5x\right)^2-36\)
Vì \(\left(x^2+5x\right)^2\ge0\Rightarrow\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\ge-36\)
\("="\Leftrightarrow\left(x^2+5x\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
(x - 1)(x + 2)(x + 3)(x + 6) = (x -1)(x + 6) (x + 2)(x+3) = (x2 + 5x - 6) (x2 + 5x + 6)
đặt x2 + 5x = t
thay vào được: (t - 6) (t+ 6) = t2 - 36
có: (x - 1)(x + 2)(x + 3)(x + 6) = t2 - 36 = (x2 + 5x)2 - 36
Vậy giá trị nhỏ nhất của biểu thức là -36
Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự
1:
a: =x^2-7x+49/4-5/4
=(x-7/2)^2-5/4>=-5/4
Dấu = xảy ra khi x=7/2
b: =x^2+x+1/4-13/4
=(x+1/2)^2-13/4>=-13/4
Dấu = xảy ra khi x=-1/2
e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
f: x^2-4x+7
=x^2-4x+4+3
=(x-2)^2+3>=3
Dấu = xảy ra khi x=2
2:
a: A=2x^2+4x+9
=2x^2+4x+2+7
=2(x^2+2x+1)+7
=2(x+1)^2+7>=7
Dấu = xảy ra khi x=-1
b: x^2+2x+4
=x^2+2x+1+3
=(x+1)^2+3>=3
Dấu = xảy ra khi x=-1
A = x2 + 5x + 7
= ( x2 + 5x + 25/4 ) + 3/4
= ( x + 5/2 )2 + 3/4
\(\left(x+\frac{5}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Đẳng thức xảy ra <=> x + 5/2 = 0 => x = -5/2
=> MinA = 3/4 <=> x = -5/2
B = 6x - x2 - 5
= -( x2 - 6x + 9 ) + 4
= -( x - 3 )2 + 4
\(-\left(x-3\right)^2\le0\forall x\Rightarrow-\left(x-3\right)^2+4\le4\)
Đẳng thức xảy ra <=> x - 3 = 0 => x = 3
=> MaxB = 4 <=> x = 3
C = ( x - 1 )( x + 2 )( x + 3 )( x + 6 )
= [ ( x - 1 )( x + 6 ) ][ ( x + 2 )( x + 3 ) ]
= [ x2 + 5x - 6 ][ x2 + 5x + 6 ]
= ( x2 + 5x )2 - 36
\(\left(x^2+5x\right)^2\ge0\forall x\Rightarrow\left(x^2+5x\right)^2-36\ge-36\)
Đẳng thức xảy ra <=> x2 + 5x = 0
<=> x( x + 5 ) = 0
<=> x = 0 hoặc x = -5
=> MinC = -36 <=> x = 0 hoặc x = -5
\(M=\text{(x+1)(x-2)(x-3)(x-6)}\)
\(=\left(x^2-5x-6\right)\left(x^2-5x+6\right)\)
\(=\left(x^2-5x\right)^2-6^2=\left(x^2-5x\right)^2-36\ge-36\)( Vì \(\left(x^2-5x\right)^2\ge0\))
Vậy \(MinM=-36\Leftrightarrow\left(x^2-5x\right)^2=0\Leftrightarrow x^2-5x=0\Leftrightarrow x\left(x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}}\)
nỏ hiểu giải thích chữgtnn