Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(2x\right)^2-2.2x.5+5^2-4x.x+4x.6\)
\(=4x^2-20x+25-4x^2+24x=4x+25\)
\(B=\left(7x-3y\right)^2-\left(7x-3y\right)\left(7x+3y\right)\)
\(=\left(7x-3y\right)\left(7x-3y-7x-3y\right)\)
\(=\left(7x-3y\right)\left(-6y\right)=18y^2-42xy\)
\(C=\left(3-2x\right)^2+\left(3+2x\right)^2\)
\(=9-2.3.2x+4x^2+9+2.3.2x+4x^2\)
\(=18+8x^2\)
\(D=\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+x\right)\left(y-z\right)\)
\(=\left(x-y+z+z-y\right)^2=x^2\)
Đề này mình làm trong kiểm tra một tiết môn toán rồi .
Mình tìm ra nghiệm của đa thức h(x) là 3
Mình chỉ làm vậy thôi nhưng thầy giáo mình chưa có chữa bài này !!!
a) A=2x^2-1/3y
thay x=2 và y=9 vào biểu thức:
Ta có :2.2^2-1/3.9
=2.4-3
= 6-3=3
Vậy tại x =2 và y=9 giá trị của biểu thức bằng 3
Lời giải:
Từ điều kiện đề bài dễ dàng suy ra \(a,b,c<\sqrt{3}<2\)
Sử dụng phương pháp hệ số bất định, ta sẽ CM: \(2a+\frac{1}{a}\geq \frac{5}{2}+\frac{a^2}{2}\)
BĐT này luôn đúng vì \(\Leftrightarrow (2-a)(a-1)^2\geq 0\)
Thiết lập tương tự với $b,c$, suy ra \(2(a+b+c)+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\geq \frac{15}{2}+\frac{a^2+b^2+c^2}{2}=9\) (đpcm)
Dấu $=$ xảy ra khi $a=b=c=1$
T.T bn ơi, hình như đề bài chính là tích của các lũy thừa rùi mà....còn nếu là viết gọn ra thì tính thui là ra
a) 2 (x + 5) - x2 - 5x = 0
=> 2 (x + 5) - (x2 + 5x) = 0
=> 2 (x + 5) - x (x + 5) = 0
=> (2 - x) (x + 5) = 0
Có 2 TH xảy ra :
TH1 : 2 - x = 0 => x = 2
TH2 : x + 5 = 0 => x = -5
a, 2\((\)x +5\()\) - x2 - 5x =0
\(\Leftrightarrow\) 2x2 +10-x2 - 5x=0
\(\Leftrightarrow\)x2 - 5x +10=0
\(\Delta'\) = \((\) -5\()\)2 - 1. 10=15 \(\Rightarrow\) \(\sqrt{\Delta'}\) = \(\sqrt{15}\)
\(\Rightarrow\) x1 = 5 + \(\sqrt{15}\) ; x2 = 5- \(\sqrt{15}\)
pt có 2 nghiệm ........
b, 2x2 + 3x -5 =0
có a+b+c= 2+3+ \((\) -5\()\) =0
\(\Rightarrow\) x1=1 , x2 =\(\dfrac{-5}{2}\)
c, \((\) x-1\()\)2 + 4.\((x+2)\) - \((x^2-3)\)=0
\(\Rightarrow x^2-2x+1+4x+8-x^{2^{ }}+3=0\)
\(\Leftrightarrow\) -2x +12 =0
\(\Leftrightarrow\)-2x=-12\(\Leftrightarrow\) x= 6
Do \(2A+B=5x^2+y^2+1>0\) nên \(A,B\) không cùng đồng thời nhận giá trị âm được!
a: \(\Leftrightarrow2x^2+4-x^2+\dfrac{3}{2}=-3+4x^2-\dfrac{4}{3}x^2+1\)
\(\Leftrightarrow x^2+\dfrac{11}{2}=\dfrac{8}{3}x^2-2\)
\(\Leftrightarrow x^2\cdot\dfrac{-5}{3}=-\dfrac{15}{2}\)
\(\Leftrightarrow x^2=\dfrac{9}{2}\)
hay \(x\in\left\{\dfrac{3\sqrt{2}}{2};-\dfrac{3\sqrt{2}}{2}\right\}\)
b: \(\Leftrightarrow\left|x\right|-4-2+\left|x\right|-\dfrac{1}{3}\left|x\right|+5=0\)
\(\Leftrightarrow\left|x\right|\cdot\dfrac{5}{3}=1\)
hay \(x\in\left\{\dfrac{3}{5};-\dfrac{3}{5}\right\}\)
a: \(\Leftrightarrow A=-\left(x^2-xy^2+2xz-3y^2\right)=-x^2+xy^2-2xz+3y^2\)
b: Vì tổng của B với \(4x^2y+5y^2-xz+z^2\) là một đa thức không chứa biến x nên \(B=-4x^2y+xz\)
a) ta có: (x-3,5)2 lớn hơn hoặc bằng 0
=> (x-3,5)2 +2 >= 2
=> GTNN của bt (x-3,5)2+2 là 2
khi x-3,5 =0
=> x= 3,5
b) ta có: (2x-3)4 lớn hơn hoặc bằng 0
=> (2x-3)4 -5 >= -5
=> GTNN của bt (2x-3)4 - 5 là -5
khi 2x-3 = 0
=> 2x= 3
=> x= 3/2
tick mk nhìu nhé
hám like quá