Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = x2 -2xy + 2y2+ 2x - 10y + 2033
= x2 - 2xy + y2 + y2 + 2x - 2y - 8y + 2033
= [(x2 - 2xy + y2) + 2 ( x - y) + 1]2 + (y2 - 8y + 16) + 2016
= [ (x - y)2 + 2(x - y) + 1]2 + (y - 4)2 + 2016
= (x - y + 1)2 + ( y - 4)2 + 2016 \(\ge\) 2016
=> Min của A = 2016 khi \(\left\{\begin{matrix}y-4=0\\x-y+1=0\end{matrix}\right.\) => \(\left\{\begin{matrix}y=4\\x-3=0\end{matrix}\right.\) => \(\left\{\begin{matrix}y=4\\x=3\end{matrix}\right.\)
Vậy Min của A = 2016 khi x = 3 và y = 4.
\(N=x^2+y^2+xy+x+y\)
\(\Rightarrow N=\left(x^2+xy+y^2\right)+\left(x+y\right)\)
\(\Rightarrow N=\left(x+y\right)^2+\left(x+y\right)\)
\(\Rightarrow N=\left(x+y\right)\left(x+y+1\right)\)
A= (x2-2xy +y2)+(2x-2y)+1+(y2-8y+16)
A= (x-y)2 +2(x-y) +1 +(y-4)2
A= (x-y+1)2 +(y-4)2
Vì (x-y+1)2 +(y-4)2 >= 0 với mọi x,y
Dấu = xảy ra <=> x-y+1=0 và y-4=0
<=> x=3 và y=4
Tìm GTNN chủa biểu thức:
a, A=x2+6y2-2xy-12x+2y+45
b, B=x2-2xy+3y2-2xy-10y+20
c, C=x2+4y2-2xy-10x+4y+32
\(M=x^2-2xy+y^2+2x-2y+1+y^2-8y+16+2003=\left(x-y+1\right)^2+\left(y-4\right)^2+2003\ge2003\)
Vậy MAX=2003 đẳng thức xảy ra khi y=4, x=3