K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 giải như sau:
x^2­4xy+5y^2+10x­22y+28

= x^2­4xy+4y^2+10x­20y+25 + y^2­2y+1 +2
= (x­2y+5)^2 + (y­1)^2 +2)=2
=> GTNN của bt x^2+5y^2-4xy+10x­- 22y+28  là 2 khi x=3 và y=1( dấu = khi y^­1 =0 và x-­2y+5 = 0 ==> x= ­3;y=1 đó)

17 tháng 8 2017

bạn ghi lại đáp án cho mình đi chứ ko hỉu

Ta có: \(C=10x^2+4x-12xy+5y^2+6y+19\)

\(=\left(y^2+6y+9\right)+\left(4y^2-12xy+9x^2\right)+\left(x^2+4x+4\right)+6\)

\(=\left(y+3\right)^2+\left(2y-3x\right)^2+\left(x+2\right)^2+6\ge6\forall x,y\)

Dấu '=' xảy ra khi:

\(\left\{{}\begin{matrix}y+3=0\\2y-3x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-3\\x=-2\end{matrix}\right.\)

Vậy: Giá trị nhỏ nhất của biểu thức \(C=10x^2+4x-12xy+5y^2+6y+19\) là 6 khi x=-2 và y=-3

15 tháng 11 2017

\(N=\left(x-\frac{2}{7}\right)^{2008}+\left(0,2-\frac{1}{5y}\right)^{2010}+\left(-1\right)^{200}\)

Ta có : \(\left(x-\frac{2}{7}\right)^{2008}\ge0\);\(\left(0,2-\frac{1}{5y}\right)^{2010}\ge0\)

\(\Rightarrow N=\left(x-\frac{2}{7}\right)^{2008}+\left(0,2-\frac{1}{5y}\right)^{2010}+\left(-1\right)^{200}\)

Dấu "=" xảy ra khi Min \(N=0+0+1=1\)