Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3\sqrt[3]{abc}\le a+b+c\Rightarrow abc\le\frac{\left(a+b+c\right)^3}{27}=\frac{1}{27}\) (BĐT AM-GM)
\(\sqrt{a^2+abc}=\sqrt{a\left(a+bc\right)}=\frac{2}{3}\sqrt{\frac{9}{4}a\left(a+bc\right)}\le\frac{2}{3}\left(\frac{\frac{9}{4}a+a+bc}{2}\right)\) (BĐT AM-GM)
Tương tự: \(\Rightarrow\)\(A\le\frac{1}{3}\left(\frac{9}{4}\left(a+b+c\right)+a+b+c+ab+bc+ca\right)+9\sqrt{\frac{1}{27}}\)
mà \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)
=>giải được
Ta có:
Theo bất đẳng thức Cô - si, ta có: \(\sqrt{\left(a+b\right)\left(a+c\right)}+\sqrt{bc}\le\frac{a+b+a+c}{2}+\frac{b+c}{2}=1\)
\(\Rightarrow\sqrt{a}\left(\sqrt{\left(a+b\right)\left(a+c\right)}+\sqrt{bc}\right)\le\sqrt{a}\)hay \(\sqrt{a^2+abc}+\sqrt{abc}\le\sqrt{a}\)
Tương tự ta có: \(\sqrt{b^2+abc}+\sqrt{abc}\le\sqrt{b}\);\(\sqrt{c^2+abc}+\sqrt{abc}\le\sqrt{c}\)
Mà \(abc\le\left(\frac{a+b+c}{3}\right)^3=\frac{1}{27}\Rightarrow\sqrt{abc}\le\frac{1}{3\sqrt{3}}\)
\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2\le3\left(a+b+c\right)=3\)\(\Leftrightarrow\sqrt{a}+\sqrt{b}+\sqrt{c}\le\sqrt{3}\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)
1
\(a\sqrt{b^3+1}=a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le a\cdot\frac{b+1+b^2-b+1}{2}=\frac{ab^2}{2}+1\)
Tương tự ta có:\(P\le3+\frac{1}{2}\left(ab^2+bc^2+ca^2\right)\)
Giả sử b nằm giữa a và c
Ta có:
\(\left(b-a\right)\left(b-c\right)\le0\Leftrightarrow b^2-bc-ab+ac\le0\Leftrightarrow b^2+ac\le ab+bc\)
\(\Leftrightarrow ab^2+a^2c\le a^2b+abc\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+bc^2+abc\)
\(\le a^2b+bc^2+2abc=b\left(a+c\right)^2=b\left(3-b\right)^2\)
Ta chứng minh \(b\left(3-b\right)^2\le4\) dể chứng minh
Khi đó:\(P\le3+\frac{4}{2}=5\)
Dấu "=" xảy ra tại a=0;b=1;c=2 và các hoán vị
2
Đặt \(a+b-c=x;b+c-a=y;c+a-b=z\)
\(\Rightarrow a=\frac{x+y}{2};b=\frac{y+z}{2};c=\frac{z+x}{2}\)
Bất đẳng thức cần chứng minh tương đương với:\(xyz\le\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{8}\) ( đúng theo bđt cô si )
P/S:a,b,c không là độ dài 3 cạnh tam giác vẫn đúng theo BĐT Schur
Bài 1: em làm không đúng rồi và cô không hiểu ý tưởng làm bài của em nhưng có mấy lỗi cơ bản:
Sai dòng thứ nhất \(\frac{ab^2}{2}+a\)
Dấu bằng xảy ra cũng sai. Dòng thứ 6 em nhân cả hai vế cho a mà dấu bằng a = 0 . vô lí
Dòng thứ 5 ( b - a ) ( b - c ) <= 0 thì dấu bằng xảy ra a = b hoặc b = c chứ
Dòng thứ 8 => sau đó làm thế nào.
Dễ dàng dự đoán được dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)Nhận thấy các đại lượng trong căn và mẫu đồng chưa bậc nên suy nghĩ đầu tiên là đồng bậc. Để ý đến giả thiết a+b+c=1 ta thấy \(a^2+abc=a^2\left(a+b+c\right)+abc=a\left(a+b\right)\left(a+c\right)\)
\(c+ab=a\left(a+b+c\right)+ab=\left(a+c\right)\left(b+c\right)\)
Hoàn toàn tương tự ta có \(b^2+abc=b\left(b+a\right)\left(b+c\right);c^2+abc=c\left(c+b\right)\left(c+a\right)\)
\(b+ac=\left(a+b\right)\left(b+c\right);a+bc=\left(a+b\right)\left(b+c\right)\)
Khi đó bất đẳng thức cần chứng minh trở thành
\(\frac{\sqrt{a\left(a+b\right)\left(a+c\right)}}{\left(a+c\right)\left(b+c\right)}+\frac{\sqrt{b\left(b+c\right)\left(b+a\right)}}{\left(a+b\right)\left(a+c\right)}+\frac{\sqrt{c\left(c+a\right)\left(c+b\right)}}{\left(b+a\right)\left(b+c\right)}\le\frac{1}{2\sqrt{abc}}\)
hay \(\frac{a\sqrt{bc\left(a+b\right)\left(a+c\right)}}{\left(a+c\right)\left(c+b\right)}+\frac{b\sqrt{ab\left(b+c\right)\left(a+b\right)}}{\left(a+b\right)\left(a+c\right)}+\frac{c\sqrt{ab\left(a+b\right)\left(b+c\right)}}{\left(c+b\right)\left(b+a\right)}\le\frac{1}{2\sqrt{abc}}\)
Quan sát bất đẳng thức trên ta liên tưởng đến bất đẳng thức Cauchy, để ý là
\(bc\left(a+b\right)\left(a+c\right)=c\left(a+b\right)\cdot b\left(a+c\right)=b\left(a+b\right)\cdot c\left(a+c\right)\)
Trong 2 cách viết trên ta chọn cách viết thứ nhất vì khi sử dụng bất đẳng thức Cauchy dạng \(2\sqrt{xy}\le x+y\)thì không tạo ra các đại lượng có chứa các bình phương. Khi đó áp dụng bất đẳng thức Cauchy ta được
\(\sqrt{bc\left(a+b\right)\left(a+c\right)}\le\frac{b\left(a+c\right)+c\left(a+b\right)}{2}=\frac{ab+2bc+ca}{2}\)
Áp dụng tương tự ta được
\(\frac{a\sqrt{bc\left(a+b\right)\left(a+c\right)}}{\left(c+a\right)\left(c+b\right)}+\frac{b\sqrt{ac\left(b+c\right)\left(a+b\right)}}{\left(a+b\right)\left(a+c\right)}+\frac{c\sqrt{ab\left(a+c\right)\left(b+c\right)}}{\left(b+c\right)\left(b+a\right)}\)\(\le\frac{a\left(ab+2bc+ca\right)}{2\left(c+a\right)\left(c+b\right)}+\frac{b\left(ab+bc+2ac\right)}{2\left(a+b\right)\left(a+c\right)}+\frac{c\left(2ab+bc+ca\right)}{2\left(b+c\right)\left(b+a\right)}\)
Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{a\left(ab+2bc+ca\right)}{2\left(c+a\right)\left(c+b\right)}+\frac{b\left(ab+bc+2ac\right)}{2\left(a+b\right)\left(a+c\right)}+\frac{c\left(2ab+bc+ca\right)}{2\left(b+c\right)\left(b+a\right)}\le1\)
hay \(a\left(ab+2bc+ca\right)\left(a+b\right)+b\left(b+c\right)\left(ab+bc+2ca\right)+c\left(c+b\right)\left(2ab+bc+ca\right)\)\(\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Vế trái của bất đẳng thức là bậc bốn còn vế phải là bậc ba nên ta có thể đồng bậc là
\(a\left(ab+2bc+ca\right)+b\left(b+c\right)\left(ab+bc+2ac\right)+c\left(c+b\right)\left(2ab+bc+ca\right)\)
\(\le\left(a+b\right)\left(b+c\right)\left(c+a\right)\left(a+b+c\right)\)
Triển khai và thu gọn ta được \(a^3\left(b+c\right)+b^3\left(c+a\right)+c^3\left(a+b\right)+a^2b^2+b^2c^2+c^2a^2+5\left(a^2bc+ab^2c+abc^2\right)\)
\(\le a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)+2\left(a^2b^2+b^2c^2+c^2a^2\right)+4\left(a^2bc+ba^2c+abc^2\right)\)
hay \(abc\left(a+b+c\right)\le a^2b^2+b^2c^2+c^2a^2\), đây là một đánh giá đúng
Dấu đẳng thức xảy ra tại \(a=b=c=\frac{1}{3}\)
\(P^2=a+b+c+a^2+b^2+c^2+2\sqrt{\left(a+b^2\right)\left(b+c^2\right)}+2\sqrt{\left(b+c^2\right)\left(c+a^2\right)}+2\sqrt{\left(a+b^2\right)\left(c+a^2\right)}.\)
Theo bđt Bunhiacopski ta có
\(2\sqrt{\left(a+b^2\right)\left(b+c^2\right)}\ge2\sqrt{b^3}\)(vì \(a,c\ge0\))
Tương tự \(2\sqrt{\left(b+c^2\right)\left(c+a^2\right)}\ge2\sqrt{c^3}\)
\(2\sqrt{\left(c+a^2\right)\left(a+b^2\right)}\ge2\sqrt{a^3}\)
\(\Rightarrow P^2\ge a+b+c+a^2+b^2+c^2+2\sqrt{a^3}+2\sqrt{b^3}+2\sqrt{c^3}\)
Theo gt : \(\hept{\begin{cases}a,b,c\ge0\\a^2+b^2+c^2=1\end{cases}\Rightarrow0\le a,b,c\le1}\)
\(\Rightarrow\hept{\begin{cases}a\ge a^2,b\ge b^2,c\ge c^2\\a^3\ge a^4,b^3\ge b^4,c^3\ge c^4\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a+b+c\ge a^2+b^2+c^2=1\\2\sqrt{a^3}+2\sqrt{b^3}+2\sqrt{c^3}\ge2\left(a^2+b^2+c^2\right)=2\end{cases}}\)
\(\Rightarrow P^2\ge1+1+2=4\)\(\Rightarrow P\ge2\)
Dấu "=" xảy ra khi a=b=0,c=1 và các hoán vị của nó
Tìm Max
Theo bđt Bunhiacopski ta có
\(P^2\le\left(1+1+1\right)\left(a+b+c+a^2+b^2+c^2\right)\)
\(=3\left(a+b+c+a^2+b^2+c^2\right)\)\(\le3\left(\sqrt{3\left(a^2+b^2+c^2\right)}+a^2+b^2+c^2\right)\)
\(=3\left(1+\sqrt{3}\right)\)
\(\Rightarrow P\le\sqrt{3\left(1+\sqrt{3}\right)}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
\(a,b,c\ge0\Rightarrow abc\ge0\Rightarrow\sqrt{a^2+abc}\ge\sqrt{a^2}=a\)
Tương tự:\(\sqrt{b^2+abc}\ge b,\sqrt{c^2+abc}\ge c\)
\(\Rightarrow A\ge a+b+c+0=1\)
Đẳng thức xảy ra \(\Leftrightarrow abc=0,a+b+c=1\)(bạn tự giải tiếp)